

Funded by the 7
th

Framework Programme

of the European Union

Project Acronym: RAPP

Project Full Title: Robotic Applications for Delivering Smart User Empowering Applications

Call Identifier: FP7-ICT-2013-10

Grant Agreement: 610947

Funding Scheme: Collaborative Project

Project Duration: 36 months

Starting Date: 01/12/2013

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation

Deliverable status: Final

File Name: RAPP_D2.2.2_V2.0_30112015.pdf

Due Date: November 30, 2015

Submission Date: November 30, 2015

Dissemination Level: Public

Task Leader: 3 - WUT

Author: Marcin Szlenk, Cezary Zieliński, Maksym Figat

© Copyright 2013-2016 The RAPP FP7 consortium

The RAPP project consortium is composed of:

CERTH Centre for Research and Technology Hellas Greece

INRIA Institut National de Recherche en Informatique et en Automatique France

WUT Politechnika Warszawska Poland

SO Sigma Orionis SA France

Ortelio Ortelio LTD United Kingdom

ORMYLIA Idryma Ormylia Greece

INGEMA Fundacion Instituto Gerontologico Matia - Ingema Spain

AUTH Aristotle University of Thessaloniki Greece

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 2 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

Disclaimer

All intellectual property rights are owned by the RAPP consortium members and are protected by the applicable laws. Except where

otherwise specified, all document contents are: “© RAPP Project - All rights reserved”. Reproduction is not authorised without prior

written agreement.

All RAPP consortium members have agreed to full publication of this document. The commercial use of any information contained in this

document may require a license from the owner of that information.

All RAPP consortium members are also committed to publish accurate and up to date information and take the greatest care to do so.

However, the RAPP consortium members cannot accept liability for any inaccuracies or omissions nor do they accept liability for any

direct, indirect, special, consequential or other losses or damages of any kind arising out of the use of this information.

Revision Control

VERSION AUTHOR DATE STATUS

0.1 Marcin Szlenk (WUT) October 1, 2015 Initial Draft

0.2 Marcin Szlenk (WUT) October 12, 2015 Second Draft

0.5 Marcin Szlenk (WUT) October 21, 2015 Third Draft

1.0 Cezary Zieliński (WUT) November 3, 2015 Fourth Draft

1.1 Maksym Figat (WUT) November 3, 2015 Fifth Draft

2.0 Maksym Figat (WUT) November 27, 2015 Final

Project Abstract

The RAPP project will provide an open-source software platform to support the creation and delivery of Robotic

Applications (RApps), which, in turn, are expected to increase the versatility and utility of robots. These applications will

enable robots to provide physical assistance to people at risk of exclusion, especially the elderly, to function as a

companion or to adopt the role of a friendly tutor for people who want to partake in the electronic feast but don’t know

where to start.

The RAPP partnership counts on seven partners in five European countries (Greece, France, United Kingdom, Spain

and Poland), including research institutes, universities, industries and SMEs, all pioneers in the fields of Assistive

Robotics, Machine Learning and Data Analysis, Motion Planning and Image Recognition, Software Development and

Integration, and Excluded People. RAPP partners are committed to identify the best ways to train and adapt robots to

serve and assist people with special needs.

To achieve these goals, over three years, the RAPP project will implement the following actions:

 Provide an infrastructure for developers of robotic applications, so they can easily build and include machine

learning and personalization techniques to their applications.

 Create a repository, from which robots can download Robotic Applications (RApps) and upload useful

monitoring information.

 Develop a methodology for knowledge representation and reasoning in robotics and automation, which will

allow unambiguous knowledge transfer and reuse among groups of humans, robots, and other artificial

systems.

 Create RApps based on adaptation to individuals and taking into account the special needs of elderly people,

while respecting their autonomy and privacy.

 Validate this approach by deploying appropriate pilot cases to demonstrate the use of robots for health and

motion monitoring, and for assisting technologically illiterate people or people with mild memory loss.

http://rapp-project.eu/?page_id=52

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 3 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

The RAPP project will help to enable and promote the adoption of small home robots and service robots as companions

to our lives. RAPP partners are committed to identify the best ways to train and adapt robots to serve and assist people

with special needs. Eventually, our aspired success will be to open and widen a new ‘inclusion market’ segment in

Europe.

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 4 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

Table of Contents

REVISION CONTROL ... 2

PROJECT ABSTRACT ... 2

TABLE OF CONTENTS ... 4

LIST OF ABBREVIATIONS ... 5

EXECUTIVE SUMMARY ... 6

INTRODUCTION ... 7

1.1 OVERVIEW OF THE DELIVERABLE ... 7
1.2 BACKGROUND ... 7

AGENTS ... 8

2.1 EMBODIED AGENT ... 8
2.2 COMPUTATIONAL AGENT .. 9

RAPP AGENTS ... 9

RAPP AGENT INTERACTION ... 10

3.1 THREE AGENT SYSTEM .. 10
3.2 FOUR AGENT SYSTEM .. 12

RAPP CORE AGENT ... 13

RAPP AGENT IMPLEMENTATION ... 15

4.1 CORE TECHNOLOGIES .. 15
4.2 HOP ... 15
4.3 ROS ... 16
4.4 ROSBRIDGE ... 16
4.5 CORE AGENT INTERFACE ... 17

4.5.1 Communication API ... 17
4.5.2 Navigation API .. 18
4.5.3 Vision API ... 20

CONCLUSIONS .. 20

REFERENCES ... 21

ANNEXES .. 22

ANNEX 1 – RAPP CORE AGENT SPECIFICATION .. 22

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 5 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

List of Abbreviations

ABBREVIATION DEFINITION

API APPLICATION PROGRAMMING INTERFACE

HOP HOP FRAMEWORK

JSON JAVASCRIPT OBJECT NOTATION

RAPP RAPP APPLICATION

RAPP RAPP PROJECT

ROS ROBOT OPERATING SYSTEM

RPC REMOTE PROCEDURE CALL

TCP TRANSMISSION CONTROL PROTOCOL

UDP USER DATAGRAM PROTOCOL

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 6 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

Executive summary

The present document is a deliverable of the RAPP project, funded by the European Commission’s Directorate-General

for Communications Networks, Content & Technology (DG CONNECT), under its 7th EU Framework Programme for

Research and Technological Development (FP7).

The deliverable presents the interaction between the RAPP platform and the robot based software. Usually robot

controllers do not interact with external sources of software and have a fixed structure. In this document an alternative

approach is presented. A robot companion interacts with the user who can demand of the robot a plethora of reactions.

Limited capabilities of the robot based computer cannot store all the necessary software. Thus an idea to store that

software in the RAPP platform based in the cloud emerged. However for this to work, the structure of the robot control

program must vary. This document presents the architecture of a robot control system with exchangeable modules

related to specific applications. Those are downloaded upon request – when the user commands the robot to do

something it does not know how to.

The overall system software is presented in terms of agents – some fixed and some exchangeable. As an example three

and four agent systems are described. Systems with such a structure should cover the majority of the needs that the

executed tasks require. Agents are composed of subsystems: real effectors, virtual effectors, real receptors, virtual

receptors and the control subsystem. However some of the agents may be deficient by not having some of the

subsystems. Nevertheless each agent must possess a control subsystem. The actions of subsystems of agents are

defined in terms of Finite State Machines, where in each state the subsystem executes a specific behavior. This

behavior, in turn, is defined by transition function and a terminal condition. Those take as arguments the contents of the

subsystem input buffers and internal memory and produce the contents of output buffers and again the internal memory.

The communication between agents residing in the cloud and the robot is organized by using HOP. The software

embedded in the robot is ROS based. This document describes the most important implementation details, including the

API that is provided by the robot core agent.

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 7 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

Introduction

1.1 Overview of the deliverable

The deliverable first provides the background information especially regarding the relevant state of the art. Then it

introduces the concept of an embodied agent and its simplifications (e.g. a computational agent). The general internal

structure of an agent is shown. The system architecture is presented in terms of those agents. The novelty of the

presented systems lies with their variable structure. Robot control systems usually have fixed structures. Due to the

multitude of possible applications of a companion robot the software requirements tend to excessive, thus an idea of

storing the necessary software in a repository and downloading and activating it on demand emerged. Such systems are

considered here. Three agent and four agent systems can solve the majority of problems, thus this document focuses on

such systems.

1.2 Background

Robot companions to humans are inherently very complex systems. On the one hand such a robot should be of such a

size that would not intimidate its owner and on the other hand its capabilities should be so diverse that it should be able

to handle all possible requests of the human. It should be noted that the robot coexists in the same environment as the

human and has to communicate with the owner in as natural form as possible. The latter requirement necessitates high

computational power of the control computer, thus is in conflict with the former requirement. The RAPP project proposes

to solve this problem by providing a certain computational platform, named the RAPP platform, that will possess

computational capabilities and contain a store for diverse RAPP applications, or RApps in short [1].

The primary goal of RAPP is to provide both a repository of software modules and a computational capability within a

cloud [2]. As the requests of humans forwarded to the robot can be innumerable, obviously it will not have all the

necessary software to fulfill the requests. If the request is beyond the current capabilities of the robot it turns to the RAPP

store for additional software module – a RAPP Application, or RApp in short. In some cases this RApp can be executed

solely on the robot's control computer. In some more demanding cases support from the software located in the cloud is

necessary. The RAPP project proposes an agent based [3] system architecture solving the above stated problem. It

should be noted that in the majority of cases the structure of the control system of a robot is fixed. Here an exchange of

agents, while the system is operating, is postulated. Moreover, the change in the composition of the system takes place

due to the demands of the user. However the demands are formulated in terms of requests for certain services from the

robot. It is the responsibility of the control system to deduce which agents should be obtained from the cloud to provide

services executing the task at hand.

The survey [4] defines a cloud as an infrastructure supplemented by a large set of Internet-accessible resources. It

distinguishes: Big Data, Cloud Computing, Collective Robot Learning and Human Computation. Big Data are the

remotely located data such as images, maps, models, of the size beyond the capabilities of the robot’s on-board storage

and computing resources. Cloud Computing are the remotely located computational resources capable of performing

complex and time-consuming computations in an efficient way, which the robot’s control computer is not able to handle.

Usually Cloud Computing relies on massively parallel architectures. Collective Robot Learning consists in each robot

acquiring its own experience by acting in the environment. This is usually expressed in the form of data or procedures,

which can be shared with other robots connected to the cloud and operating in the same environment. Human

Computation is the utilization of data and procedures resulting from human skills, which can be represented in a form

that enables storage in the cloud. Robots can tap into that data and procedures. A cloud robot is a robot that relies on

some of the above enumerated resources and capabilities of the cloud. A prominent example of such systems is the one

produced within the RoboEarth project [5][6] utilising the KnowRob ontology [7][8]. The current cloud robotics systems

focus on holding Big Data in the cloud and using Cloud Computing for processing this data in the cloud. The RAPP

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 8 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

project focuses rather on an architecture that downloads from the cloud some of the procedures to the local controller of

the robot as well as using in conjunction cloud computational resources for joint execution of the task at hand. The

downloaded part of the software can be exchanged, so the limited capacity of the local control computer will not be

surpassed.

A historical overview of robotic system architectures can be found in [9]. One of the oldest architectures is the sense-

plan-act (SPA) architecture, used, for instance, by the Shakey robot in the 1960s. It sensed its environment, invoked

action planning and then executed the thus derived plan. As planning is a time-consuming task an alternative

architecture was proposed by R. Brooks – the subsumption architecture [10], in which actions were defined as reactions

to sensoric stimulus. If lower layer reactions could not cope with the task, upper layer ones inhibited or suppressed them

taking over control, thus subsuming their actions. As the SPA architecture tends to be prohibitively slow and the

subsumption architecture, although very reactive, lacks foresight, hybrid architectures emerged [11]. Those were usually

designed as three tier systems, having planning (deliberative layer), sequencing (usually implemented as a finite state

machine governing the actions of the system) and execution layers (responsible for motor control and sensor data

aggregation – if the two were combined a reactive layer resulted). Thus hierarchical multi-tier architectures emerged.

They differ by the criterion that is used for the purpose of decomposition into tiers or layers. Often frequency of

component behavior repetition within a layer is the discriminating factor, i.e. higher layer components operate at

significantly lower frequencies than the lower layer ones. In other cases task abstraction is the criterion, i.e. higher layer

task is decomposed into a sequence of lower layer tasks. This frequently involves also a switch from one ontology to

another one. The SPA architecture has been modified since its conception, and in the form using an agent approach it is

sometimes referred to as the BDI architecture (Belief–Desire–Intention) [12][13]. Belief corresponds to knowledge,

however differs by the fact that knowledge is certainly true, while beliefs might not be so. Desires represent objectives

that the agent wants to attain, i.e. the motivation. Intensions are desires that the agent has committed itself to, by

choosing and executing a plan that leads to their fulfillment, i.e. execution. Reactive behaviour of the agent is caused by

events, both externally and internally generated.

Robot control system architectures frequently are created using robot programming frameworks [14], e.g.: Player [15],

OROCOS [16]–[18], ORCA [19][20], ROS [21], CLARAty [22], MRROC++ [23][24], URBI [25][26]. In many cases the

framework defines just the middleware [27], i.e. the inter-module communication structure, thus the architectural style,

leaving the architectural structure to the designer. The majority of the thus defined systems have a fixed structure, i.e.

the components of the system are not created or destroyed. The RAPP project proposes an architecture that, on the one

hand, exchanges its components, and on the other hand, utilises the capabilities provided by the cloud.

Agents

2.1 Embodied agent

In general, an agent is anything that can be viewed as perceiving its environment and acting upon that environment,

having an internal imperative to realize a certain task. If the environment is physical and the agent can exert its influence

in such an environment and collect data from that environment, such an agent is termed as an embodied agent.

Embodied agents represent robots. The general structure of an embodied agent is presented in fig. 1. An embodied

agent aj, where j is the designator of an agent, has its effectors Ej,h, with which it influences the state of the environment,

and receptors Rj,l, which provide data about the state of the environment. Subscripts h and l designate particular

effectors and receptors respectively. As usually those devices are controlled by specific signals and provide data in

specific formats, that do not necessarily represent the notions that are used in formulation of the task to be executed, Ej,h

and Rj,l have to be transformed into other representations. It should be noted that the same symbols are used here both

to represent the devices and the input/output data that they provide or need. The reason for that is that multiplication of

symbols does not positively influence the intelligibility, whereas the distinction is obvious based on context. The

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 9 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

mentioned transformation of data is executed by virtual effectors ej,n and virtual receptors rj,k. The number of virtual and

real effectors and receptors, respectively, does not necessarily match, thus subscripts n and k had to be introduced. The

control subsystem of an agent cj reads-in data aggregated by the virtual receptors rj,k, which acquire this data from the

real receptors Rj,h. The thus read-in data is processed by the control subsystem cj to form control commands for the

virtual effector ej,n, that in turn transforms them into data that can be directly consumed by the real effectors Ej,h. As the

effectors change the state of the environment that the receptors perceive, the loop closes. The behaviour of the control

subsystem, the virtual effectors and the virtual receptors is defined in terms of transition functions. Transition function

based specification of the components of an embodied agent together with the communication patterns between those

components produce the definition of the behaviour of the agent. Larger systems can be composed of many agents –

this takes place in the case of the RAPP project. The thus described methodology of creating robot systems has been

described in many papers, e.g. [28]–[33].

Figure 1 - Structure of an embodied agent

2.2 Computational agent

A computational agent is one of the simplifications of an embodied agent. Such an agent does not have effectors or

receptors. It can only contact other agents, thus it can provide computational services for them. The diversity of the tasks

imposed on a robot being a human companion is so vast that is difficult to imagine that the computational power of the

robot's on-board computer will be so high that it will be able to execute all human demands. The solution to this problem

is the establishment of a RApp store which will provide the necessary software on demand. This software is being

created in the form of computational agents. Those can reside either on the robot's control computer or in the cloud,

provided adequate communication means are made available.

RAPP Agents

A RAPP system is composed of the RAPP platform residing in the cloud and one or more robots. Here, for the sake of

briefness, one robot systems will be discussed. RAPP platform contains a RApp store, holding diverse RAPP

applications delivered by the RApp providers. Moreover the RAPP platform provides certain computational means, which

include the repository agent arep. The repository agent arep, holding the RApp store, enables the robots to download

RApps and obtain certain computational services. If necessary the repository agent arep can also create and activate a

cloud agent acloud, which can execute a composition of services.

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 10 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

Each robot contains a core agent acore, which governs both the effectors of the robot and its receptors. The core agent

acore communicates with the repository agent arep, thus it is able to download RAPP applications, i.e. RApps. They are

either composed of a single agent or two agents. In the former case a dynamic agent adyn is downloaded from the RAPP

store governed by the repository agent arep. The core agent acore activates the dynamic agent adyn, and in conjunction

they execute the task at hand. In this case a three agent systems appears.

When the computational capabilities of the robot are below requirements, the RAPP platform provides the extra

computational power in the form of the necessary services. Simple services can be provided to the dynamic agent adyn

by the repository agent arep directly or, if a composition of services is required to carry out the task, a cloud agent acloud is

created. In the case when cloud agent acloud is created the RAPP application is composed of two agents. The first one,

as in the previous case, is formed as a dynamic agent adyn, which will perform its actions on the robot, and a second

agent called the cloud agent acloud, which will provide the necessary computational services in the cloud. The dynamic

agent adyn and the cloud agent acloud establish a communication link between themselves and from then on both perform

the required RApp in conjunction. In this case a four agent structure appears. The process of coming into existence of

the RAPP agent system is shown with more details in the next chapter.

RAPP Agent Interaction

3.1 Three agent system

The repository agent arep enables robots to download RApps and obtain certain computational services. Before it is

possible, the communication with the repository agent arep must be initialized by the core agent acore that is running on

the robot (see fig. 2). Once it is done, the services that are provided by the repository agent arep become accessible to

the robot. At this moment, a two agent system is operating (see fig. 3). A three agent system is created upon request,

from the core agent acore to the repository agent arep, for a given RApp (see fig. 4). In response the repository agent arep

sends the requested RApp in the form of a dynamic agent adyn, which is subsequently activated by the core agent acore

(see fig. 5). From then on the core agent acore and the dynamic agent adyn in conjunction carry out the task that the RApp

is responsible for. The operation of a three agent system is presented in fig. 6.

Figure 2 - System initialization

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 11 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

Figure 3 - Two agent system operation

Figure 4 - Dynamic agent download

Figure 5 - Dynamic agent activation

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 12 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

Figure 6 - Three agent system operation

As the repository agent arep can provide computational services, those can be invoked by the dynamic agent adyn, thus

arep and adyn can communicate directly. Once the task is completed, the core agent acore kills the dynamic agent adyn,

and is ready for the execution of another RApp, as required by the user. In the case when the services provided by the

repository agent arep have to be arranged into a complex service an extra agent in the cloud must be created, i.e. the

cloud agent acloud, and thus a four agent system appears.

3.2 Four agent system

As in the former case, a four agent system is formed in response to a request from the core agent acore for a given RApp.

The only difference is that, as the computational requirements of the task exceed those possessed by the robot, an extra

agent has to be created and activated in the cloud, i.e. the cloud agent acloud (see fig. 7). The cloud agent acloud provides

extra services to the dynamic agent adyn and usually invokes services provided by the repository agent arep. The

operation of a four agent system is presented in fig. 8. Once the service provided by the executed RApp is completed,

the core agent initiates the dismantling of the four agent system. First the dynamic agent adyn kills the cloud agent acloud

and then the core agent acore kills the dynamic agent adyn.

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 13 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

Figure 7 - Four agent system initialization

Figure 8 - Four agent system operation

RAPP Core Agent

A core agent acore is running on each robot and provides various services to the dynamic agent adyn. It also works as an

intermediate between the dynamic agent adyn and the robot's effectors and receptors. The services provided by the core

agent acore are strictly related to the abilities of the robot it is running on, so in practice, each kind of robot in a RAPP

system requires its own implementation of the core agent acore.

In case of NAO robot, the services of the core agent acore can be divided into three categories:

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 14 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

 services related to communication between the robot and a user;

 services related to robot's movement and, broadly, navigation;

 services related to robot's vision ability.

The formal specification of these services is presented in Annex 1. The core agent acore is described there as an

embodied agent that is composed of a control subsystem and various virtual effectors and receptors (see section 2.1).

The behaviours of the control subsystem and virtual effectors and receptors are specified in terms of transition functions.

At the implementation level, the core agent's services are functions of the core agent API (Application Programming

Interface), as it is shown in the tables below.

Table 1 - Communication API

NO. FUNCTION DESCRIPTION

1 captureAudio Records and stores sound from the robot's microphones.

2 playAudio Plays an audio file through the robot's speakers.

3 textToSpeech Says a specified string of characters in a given language.

4 wordSpotting Recognizes words from the database, returning the one of the highest probability.

Table 2 - Navigation API

NO. FUNCTION DESCRIPTION

1 lookAtPoint Moves a robot's head so it looks at a given point.

2 moveJoint Moves a robot's joint to a specified angle.

3 moveStop Stops robot's movement.

4 moveTo Moves the robot to a new position.

5 moveVel Moves the robot with a specified velocity.

6 takePredefinedPosture Moves the robot to a predefined posture.

7 getTransform Computes the transformation matrix.

8 rest Moves the robot to the rest position.

9 moveAlongPath Moves the robot along the path.

10 setGlobalPose Sets global position.

11 getRobotPose Returns the current robot position.

Table 3 - Vision API

NO. FUNCTION DESCRIPTION

1 captureImage Captures an image frame from the robot's camera.

2 setCameraParams Modifies internal parameters of the robot's camera.

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 15 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

RAPP Agent Implementation

4.1 Core technologies

Two core technologies used for RAPP system implementation are HOP and ROS (Robot Operating System). HOP is the

conjunction of a multi-tier programming language and a runtime environment for Web applications [34][35]. ROS is a

software platform for writing interoperable and reusable robot applications [21]. The informal coverage of the RAPP

system structure by HOP and ROS is presented in fig. 9. In a three agent system, HOP is used for downloading RApps

by the core agent acore and making use of services provided by the repository agent arep. In a four agent system, HOP is

used both for downloading RApps, communication between the dynamic agent adyn and the cloud agent acloud, and

contacting the repository agent arep. In both cases, the core agent acore and the dynamic agent adyn are usually

implemented using ROS. The cloud part of the RAPP system, i.e. the repository agent arep and the cloud agent acloud,

may utilize different other technologies for server-side programming with the above assumption that the connection to

those agents is done through HOP.

Figure 9 - Core implementation technologies

4.2 HOP

Initially, the programming language for writing HOP programs was based on the Scheme functional language, however,

to make the development of HOP programs easier, HOP framework is now in the process of moving from a Scheme

based to a JavaScript based language. A single source file of a HOP program may contain the code to be executed on

the server side (in a HOP runtime environment) as well as the code to be executed on the client side (e.g. a Web

browser), both expressed in the same language. This principle is known as multi-tier programming. Passing data

between those two parts of code is almost transparent for the programmer.

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 16 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

HOP programs can be distributed in a form of HZ packages. A HZ package is actually a tarball file (a gzipped tar file)

containing the source code and any other files, both text and binary ones, such as scripts, executables and libraries. This

form of distribution is used for RAPP applications. Each cloud agent acloud or a dynamic agent adyn is stored in a RApp

store as a single HZ package. So, a RAPP application is just a one HZ package for a three agent system, or two HZ

packages for a four agent system. Operations such as downloading, installing, removing or updating HZ packages are

entirely provided by HOP framework and utilized by the repository agent arep and the core agent acore.

The repository agent arep and the cloud agent acloud provide services to be used by others. From implementation point of

view, those services are made available as HOP services. A HOP service is the binding of a function to an URL. The

URL is then used to invoke the function remotely, using the form withURL(<url>, <callback>) in a HOP program, e.g.

running on the robot. Such a service call is asynchronous. When the call is completed, the callback function is invoked

with the result returned by the service. Possible errors and timeouts during service call can be also handled.

4.3 ROS

Implementation of the robot part of a RAPP system is usually based on ROS, where both the core agent acore and

dynamic agent adyn are implemented as ROS nodes. ROS is a peer-to-peer robot middleware package. It enables

hardware abstraction and code reuse. Usually the system to be created is divided into a number of nodes which

communicate with each other. Each node is generally implemented as a separate process. Nodes can be represented as

elements of a graph. They communicate with each other using streaming topics, RPC services, actions and the

parameter server. All of this is provided and registered by a ROS Master. In the RAPP project, the core agent acore and

the dynamic agent adyn may use three types of communication: topics, services and actions.

Topics are named buses over which nodes exchange messages. This creates purely asynchronous communication

(used e.g. getting camera data). A node receiving data does not care by which node the data was published. Thus,

topics have anonymous publish and subscribe semantics. There can be many publishers and subscribers to a topic.

Each topic is strongly typed by the ROS message that it transports. Transport within the topic is executed using TCP or

UDP protocols. Message is a simple data structure consisting of typed fields, e.g. std_msgs/String, std_msgs/Int32 or

std_msgs/Bool. A message can also contain a header which provides a time stamp.

Each node can also call or provide one or more services. Service call is an alternative method of communication. Service

calls implement one-to-one, bi-directional and synchronous communication. Each service call is initiated by a node and

the response goes back to the same node. There can be only one server, but many clients. The client node sends a

request to a server node and waits for a reply. The server receives a request, executes the required action and sends

back the response to the client. Client waits until server sends the response, therefore services are meant to be used for

short requests. Request of doing computation can be an example of the usage of services in the RAPP project.

In case of running long processes, ROS offers actions. An action defines communication relying on ROS topics. Client

publishes /goal and /cancel topics and subscribes to topics such as /feedback, /status and /result. Publishing a topic

/cancel cancels performing request by server. Actions can be used as a request of robot motion.

4.4 Rosbridge

In the RAPP system, the infrastructure for communication between the core agent acore and the repository agent arep

(downloading RAPP applications) and the communication between the dynamic agent adyn and the cloud agent acloud as

well as arep services calls is entirely provided by HOP. As the HOP programs are written in a JavaScript based language,

when the core agent acore and the dynamic agent adyn are implemented as ROS nodes, there is a need for cooperation

between HOP programs and ROS nodes. This can be easily realized with the use of Rosbridge [36]. The Rosbridge

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 17 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

server provides a socket based access to ROS functions, such as subscribing to topics and publishing messages on

topics, for non-ROS programs. A HOP program can talk to the Rosbridge server through a WebSocket connection, by

sending and receiving Rosbridge messages in a JSON (JavaScript Object Notation) format. The structure of the HOP-

ROS connection through Rosbridge is presented in fig. 10.

Figure 10 - HOP-ROS connection through Rosbridge

4.5 Core Agent Interface

4.5.1 Communication API

bool rapp::robot::Communication::playAudio (const std::string &file_path, double position, double volume,

double balance, bool play_in_loop)

 Input:

o std::string file_path - absolute path of the file

o double position - position in second where the playing should begin

o double volume - volume requested [0.0 - 1.0]

o double balance - Stereo panorama requested (-1.0 : left / 1.0 : right / 0.0 : center)

o bool play_in_loop - true -- play file in loop; false -- play once from given position

 Output: Success on play audio request.

 Description: Method which calls ros service rapp_play_audio. It causes nao robot plays audio file.

bool rapp::robot::Communication::textToSpeech (const std::string &str, Language

language=Language::ENGLISH)

 Input: string: text, string: language

 Output: Success on speak request

 Description: Given a text message with language flag, the robot says the specified string of characters while

using speakers. Uses the given language.

std::string rapp::robot::Communication::wordSpotting (std::string dictionary[], int size)

 Input:

o std::string dictionary[] - database of recognized words

o int size_of_dictionary - size of the dictionary

 Output: Detected word or if word was not detected then it returns "Empty"

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 18 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

 Description: Given small database of recognized words (for example: [Alarm, E-mail, Hazard, Exit]). It

recognizes the words included in the database and returns the word, which was detected with the highest

probability.

Note: User should speak clearly into the microphone located on the front of the robot head. It works for a small dictionary

of words.

std::string rapp::robot::Communication::captureAudio (int time)

 Input: recording time duration

 Output: std::string audioUrl (audio file path and name)

 Description: Record the audio message from the microphones by the desired time.

 Audio file is recorded as a file: "/home/nao/ws_rapp_applications_nao/nao/data/mail/sounds/rapp_email.ogg"

std::string rapp::robot::Communication::captureAudio (std::string &file_path, float waiting_time, int

microphone_energy)

 Input:

o std::string file_path

o float waiting_time

o int microphone_energy

 Output: std::string audioUrl (audio file path and name)

 Description: Record the audio message with silence detection. Recording stops after a specified time

(waiting_time in [s]), if sound with a sufficient energy level (microphone_energy) was not detected during this

time (microphone_energy should be > 1700 (noise)). It saves the file in the ogg extension.

4.5.2 Navigation API

bool rapp::robot::Navigation::moveTo (float x, float y, float theta)

 Input:

o x - x-element of the end position in reference to the start position [m]

o y - y-element of the end position in reference to the start position [m]

o theta - Angle of the end position in reference to the start position [rad]

 Output: Success on moveTo request.

 Description: Robot moves of an increment value.

bool rapp::robot::Navigation::moveVel (float x, float y, float theta)

 Input:

o x – velocity along X-axis. Use negative values for backward motion [m/s],

o y – velocity along Y-axis. Use positive values to go to the left [m/s],

o theta – velocity around Z-axis. Use negative values to turn clockwise [rad/s].

 Output: Success on moveVel request

 Description: Robot moves to StandInit pose, then move with specified velocity. This is a non blocking method.

bool rapp::robot::Navigation::moveStop ()

 Output: Success on moveStop request

 Description: Stop Nao move

bool rapp::robot::Navigation::moveJoint (std::string joint, float angle)

 Input:

o joint_name - name of joint. Names are specified in removeStiffness section.

 Example: LHipRoll, LShoulderRoll, RWristYaw

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 19 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

o joint_angle - desired angle [rad]

 Output: Success on moveJoint request.

 Description: Move Nao joint to specified angle. Stiffness of the joint is set automatically. This is a blocking

method.

bool rapp::robot::Navigation::takePredefinedPosture (std::string pose)

 Input:

o posture - name of a predefined posture. List of programmed postures can be found below.

 Output: Success on takePredefinedPosture request.

 Description: Move to a predefined posture. Stiffness of the whole body is set automatically. This is a blocking

method.

bool rapp::robot::Navigation::lookAtPoint (float x, float y, float z)

 Input:

o x - x-element of the point in reference to the start position [m]

o y - y-element of the point in reference to the start position [m]

o z - z-element of the point in reference to the start position [m]

 Output: Success on lookAtPoint request.

 Description: Moves head to a look forward the given position. Stiffness of the whole body is set automatically.

This is a blocking method.

bool rapp::robot::Navigation::rest ()

 Output: Success on rest request.

 Description: Robot sits and disables stiffness. The function returns the current status.

bool rapp::robot::Navigation::moveAlongPath(rapp::objects::Path path)

 Input:

o Path that contains a set of positions which has to be attained by the robot.

 Output: Success on moveAlongPath request.

 Description: Robot moves along the specified path. Function returns the current status.

bool rapp::robot::Navigation::setGlobalPose(rapp::objects::Pose pose)

 Input:

o Robot position with respect to the world frame.

 Output: Success on moveTo request.

 Description: Function sets the robot position with respect to the world frame and returns the current status.

rapp::objects::Pose rapp::robot::Navigation::getRobotPose()

 Output:

o Returns current robot position with respect to the world frame.

 Description: This function returns robot position with respect to the world frame.

cv::Mat rapp::robot::Navigation::getTransform (std::string chainName, int space)

 Input:

o std::string chainName - Name of the item. Could be: any joint or chain or sensor (Use

ALMotionProxy::getSensorNames() for the list of sensors supported on your robot).

o int space - Task frame {FRAME_TORSO = 0, FRAME_WORLD = 1, FRAME_ROBOT = 2}.

 Output: cv::Mat robotToCameraMatrix - Transposition matrix from one frame to another frame

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 20 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

 Description: This function computes the transposition matrix from one frame to another (e.g. from camera

frame to robot frame).

4.5.3 Vision API

cv::Mat rapp::robot::Vision::captureImage (std::string cameraId, int cameraResolution)

 Input:

o cameraId - selects the camera: "top", "bottom"

o cameraResolution - sets the camera resolution: 3->4VGA,2->VGA,1->QVGA

 Output: captured image or cv::Mat() if capture failed

 Description: This function captures the frame from the robots camera. The resolution of the captured image is

set to given cameraResolution. The color space is set to kBGRColorSpace.

VAL RES WIDTH HEIGHT

0 QQVGA 160 120

1 QVGA 320 240

2 VGA 640 480

3 4VGA 1280 960

vector<bool> rapp::robot::Navigation::setCameraParams (int cameraId, vector<int> cameraParameterId,

vector<int> newValue)

 Input:

o int cameraId - Camera ID: 0-top, 1-bottom

o vector<int> cameraParameterId – vector of camera Parameter ID, see at http://doc.aldebaran.com/2-

1/family/robots/video_robot.html#cameraparameter-mt9m114

o vector<int> newValue – vector of parameters values

 Output: success on setCameraParams request

 Description: Modifies camera internal parameters.

bool rapp::robot::Navigation::setCameraParam (int cameraId, int cameraParameterId, int newValue)

 Input:

o int cameraId - Camera ID: 0-top, 1-bottom

o int cameraParameterId - Camera Parameter ID, see at http://doc.aldebaran.com/2-

1/family/robots/video_robot.html#cameraparameter-mt9m114

o int newValue - new parameter value

 Output: success on setCameraParams request

 Description: Modifies camera internal parameter.

Conclusions

This document provides a general description of the structure and the functioning of the RAPP system. Moreover it also

delves into the structure and functioning of the Core Agent. The Core Agent has a fixed structure, while the Dynamic

Agents are created and destroyed according to the needs of particular tasks that must be executed upon the request of

the user. The Dynamic Agents will be created by the RAPP providers and will communicate with the Core Agent, that is

why it is of an utmost importance that the specification of the Core Agent be precise. This specification is provided in

Annex I to this document.

http://doc.aldebaran.com/2-1/family/robots/video_robot.html#cameraparameter-mt9m114
http://doc.aldebaran.com/2-1/family/robots/video_robot.html#cameraparameter-mt9m114
http://doc.aldebaran.com/2-1/family/robots/video_robot.html#cameraparameter-mt9m114
http://doc.aldebaran.com/2-1/family/robots/video_robot.html#cameraparameter-mt9m114

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 21 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

References

[1] Psomopoulos, F., Tsardoulias, E., Giokas, A., Zielinski, C., Prunet, V., Trochidis, I., Daney, D., Serrano, M., Courtes,

L., Arampatzis, S., Mitkas, P.: Rapp system architecture. In: IROS 2014 – Assistance and Service Robotics in a

Human Environment, Workshop in conjunction with IEEE/RSJ International Conference on Intelligent Robots and

Systems, Chicago, Illinois, September 14 (2014)

[2] Grossman, R.L.: The case for cloud computing. IT Professional 11(2) (2009) 23–27

[3] Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117(2) (2000) 277–296

[4] Kehoe, B., Patil, S., Abbeel, P., Goldberg, K.: A survey of research on cloud robotics and automation. IEEE

Transactions on Automation Science and Engineering 12(2) (April 2015)

[5] Tenorth, M., Perzylo, A.C., Lafrenz, R., Beetz, M.: Representation and exchange of knowledge about actions,

objects, and environments in the RoboEarth framework. IEEE Transactions on Automation Science and Engineering

10 (July 2013) 643–651

[6] Tenorth, M., Perzylo, A.C., Lafrenz, R., Beetz, M.: The RoboEarth language: Representing and exchanging

knowledge about actions, objects, and environments. In: IEEE International Conference on Robotics and

Automation. (2012)

[7] Tenorth, M., Beetz, M.: KnowRob — knowledge processing for autonomous personal robots. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems, St. Louis, USA. (October, 10–15 2009) 4261–4266

[8] Tenorth, M., Beetz, M.: KnowRob: a knowledge processing infrastructure for cognition-enabled robots. International

Journal of Robotics Research 32(5) (May 2013) 566–590

[9] Kortenkamp, D., Simmons, R.: Robotic systems architectures and programming. In Khatib, O., Siciliano, B., eds.:

Springer Handbook of Robotics. Springer (2008) 187–206

[10] Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation 2(1)

(1986) 14–23

[11] Arkin, R.C.: Behavior-Based Robotics. MIT Press (1998)

[12] Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1) (1993) 51–92

[13] Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide. John Wiley & Sons (2004)

[14] Brugali, D., Broten, G.S., Cisternino, A., Colombo, D., Fritsch, J., Gerkey, B., Kraetzschmar, G., Vaughan, R., Utz,

H.: Trends in robotic software frameworks. In Brugali, D., ed.: Software Engineering for Experimental Robotics.

Springer- Verlag (2007) 259–266

[15] Vaughan, R.T., Gerkey, B.P.: Reusable robot software and the Player/Stage project. In Brugali, D., ed.: Software

Engineering for Experimental Robotics. Volume 30 of Springer Tracts in Advanced Robotics. Springer (2007) 267–

289

[16] Bruyninckx, H.: Open robot control software: the orocos project. In: International Conference on Robotics and

Automation (ICRA). Volume 3., IEEE (2001) 2523– 2528

[17] Bruyninckx, H.: OROCOS – Open Robot Control Software. http://www.orocos.org/ (2002)

[18] Bruyninckx, H.: The real-time motion control core of the OROCOS project. In: Proceedings of the IEEE International

Conference on Robotics and Automation. IEEE (September 2003) 2766–2771

[19] Brooks, A., Kaupp, T., Makarenko, A., Williams, S., Orebäck, A.: Orca: A com- ponent model and repository. In

Brugali, D., ed.: Software Engineering for Experimental Robotics. Volume 30 of Springer Tracts in Advanced

Robotics. Springer (2007) 231–251

[20] Brooks, A., Kaupp, T., Makarenko, A., Williams, S., Orebäck, A.: Towards component-based robotics. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS’05). (August 2005) 163–168

[21] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-

source Robot Operating System. In: Proceedings of the Open-Source Software workshop at the International

Conference on Robotics and Automation (ICRA). (2009)

[22] Nesnas, I.: The CLARAty project: Coping with hardware and software heterogenity. In Brugali, D., ed.: Software

Engineering for Experimental Robotics. Springer– Verlag (2007) 9–30

7
th
 Framework Programme  Grant Agreement # 610947

D2.2.2 RAPP Store-Core Behaviours Interaction Final Implementation  Dissemination level - Public

Page 22 of 22

A Software Platform to deliver smart, user empowering Robotic Applications

[23] Zieliński, C.: The MRROC++ system. In: Proceedings of the First Workshop on Robot Motion and Control,

RoMoCo’99. (June 1999) 147–152

[24] Zieliński, C., Winiarski, T.: Motion generation in the MRROC++ robot programming framework. International Journal

of Robotics Research 29(4) (2010) 386–413

[25] Baillie, J.C., Nottale, M., Pothier, B.: The URBI Tutorial v.1.5. www.urbiforge.org/tutorial (2007)

[26] Baillie, J.C.: Design principles for a universal robotic software platform and application to URBI. In: IEEE ICRA 2007

Workshop on Software Development and Integration in Robotics (SDIR-II), IEEE Robotics and Automation Society

(2007)

[27] Brugali, D.: Sidebar - middlewares for distributed computing. In Brugali, D., ed.: Software Engineering for

Experimental Robotics. Springer–Verlag (2007) 395–398

[28] Zieliński, C., Kornuta, T., Boryń, M.: Specification of robotic systems on an example of visual servoing. In: 10th

International IFAC Symposium on Robot Control (SYROCO 2012). Volume 10. (2012) 45–50

[29] Kornuta, T., Zieliński, C.: Robot control system design exemplified by multi-camera visual servoing. Journal of

Intelligent & Robotic Systems (2013) 1–25

[30] Zieliński, C., Winiarski, T.: General specification of multi-robot control system structures. Bulletin of the Polish

Academy of Sciences – Technical Sciences 58(1) (2010) 15–28

[31] Zieliński, C., Kornuta, T., Winiarski, T.: A systematic method of designing control systems for service and field

robots. In: 19-th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR’2014,

IEEE (2014) 1–14

[32] Trojanek, P., Kornuta, T., Zieliński, C.: Design of asynchronously stimulated robot behaviours. In Kozłowski, K., ed.:

Robot Motion and Control (RoMoCo), 9th Workshop on. (2013) 129–134

[33] Zieliński, C., Kasprzak, W., Kornuta, T., Szynkiewicz, W., Trojanek, P., Walęcki, M., Winiarski, T., Zielińska, T.:

Control and programming of a multi-robot-based reconfigurable fixture. Industrial Robot: An International Journal

40(4) (2013) 329–336

[34] Serrano, M., Gallesio, E., Loitsch, F.: Hop: a language for programming the web 2.0. In: OOPSLA ’06: Companion to

the 21st ACM SIGPLAN symposium on Object-oriented programming systems, languages, and applications, ACM

(2006) 975–985

[35] Serrano, M., Berry, G.: Multitier programming in hop – a first step toward programming 21st-century applications.

Communications of the ACM 55(8) (2012) 53–59

[36] Crick, C., Jay, G.T., Osentoski, S., Pitzer, B., Jenkins, O.C.: Rosbridge: Ros for non-ros users. In: Proceedings of

the 15th International Symposium on Robotics Research (ISRR). (2011)

Annexes

Annex 1 – RAPP Core Agent Specification

See RAPP_D2.2.2_Annex.pdf file.

