Annex I: Specification of the RAPP Core Agent

Warsaw University of Technology, Institute of Control and Computation
Engineering, Warsaw, Poland

1 Introduction

The proposed design method requires from the designer the specification of a specific model
of a robot system executing the task that it is meant for. This model is produced on the
basis of a universal model of a robotic system described below. In this approach robots
in single- or multi-robot systems are represented as embodied agents. As embodied agents
are the most general forms of agents, out of them any robot system can be designed. The
thus produced specification is used as a blueprint for the implementation of the system.
The described methodology of creating robot systems has been described in many papers,
e.g. [1-6].

2 An embodied agent

A robotic system is represented as a set of agents a;, j = 1,...,n,, where n, is the number of
agents (j designates a particular agent). Embodied agents have physical bodies interacting
with the environment. This work focuses on embodied agents |2|, but all other agents can
be treated as special cases with no body, thus the presentation is general.

2.1 General inner structure of an embodied agent

An embodied agent a;, or simply an agent, possesses real effectors E;, which exert influence
over the environment, real receptors R, (exteroceptors), which gather information from the
surroundings, and a control system C; that governs the actions of the agent in such a way
that its task will be executed. The exteroceptors of the agent a; are numbered (or named),
hence R;;, | = 1,...,ng, and so are its effectors £, ,, h = 1,...,ng. Both the receptor
readings and the effector commands undergo transformations into a form that is convenient
from the point of view of the task, hence the virtual receptors r; and virtual effectors e,
transform raw sensor readings and motor commands into abstract concepts required by the
control subsystem to match the task formulation. Thus the control system C'; is decomposed
into: virtual effectors e;,, n = 1,...,ne, virtual receptors r,,, k = 1,...,n,, and a single
control subsystem c;. The general structure of an embodied agent is presented in fig. 1.
Virtual receptors perform sensor reading aggregation, consisting in either the composition
of information obtained from several exteroceptors or in the extraction of the required data
from one complex sensor (e.g. camera). Moreover the readings obtained from the same
exteroceptors R;, may be processed in different ways, so many virtual receptors r,, can
be formed. The control loop is closed through the environment, i.e. exteroceptor readings
R;, are aggregated by virtual receptors to be transmitted to the control subsystem c; which
generates appropriate commands for the virtual effectors e; to translate into signals driving

the effectors E;. This primary loop is supplemented by links going in the opposite direction.
The control subsystem c¢; can both reconfigure exteroceptors R; and influence the method
how the virtual receptors r; aggregate readings, thus a link from the control subsystem to
the receptor emerges. The control subsystem also acquires proprioceptive data from the
effectors. Moreover, an agent through its control subsystem is able to establish a two-way
communication with other agents a;/, j # j'.

Inter-agent /

>

4 Y transmission 2\
a o
] Cj
—C/ CONTROL SUBSYSTEM
Effector A Effector Receptor A Aggregated
Y control state Y commands readings
VIRTUAL |&jn VIRTUAL |74,k
EFFECTOR RECEPTOR
Effector A Effector Receptor A Receptor
Y control state Yy commands readings
ReaL |Ejn ReaL |Rji
EFFECTOR RECEPTOR
\§ J

Figure 1: Structure of an embodied agent

The control subsystem as well as the virtual effectors and receptors use communication
buffers to transmit or receive information to/from the other components (fig. 2). A system-
atic denotation method is used to designate both the components and their buffers. To make
the description of such a system concise no distinction is being made between the denotation
of a buffer and its state (its content) — the context is sufficient. In the assumed notation
a one-letter symbol located in the centre (i.e. E, R, e, r, ¢) designates the subsystem. To
reference its buffers or to single out the state of this component at a certain instant of time
extra indices are placed around this central symbol. The left superscript designates the sub-
system to which the buffer is connected. The right superscript designates the time instant
at which the state is being considered. The left subscript tells us whether this is an input
(x) or an output (y) buffer. When the left subscript is missing the internal memory of the
subsystem is referred to. The right subscript may be complex, with its elements separated
by comas. They designate the particular: agent, its subsystem and buffer element. Buffer
elements can also be designated by placing their names in square brackets. For instance §c§-
denotes the contents of the control subsystem input buffer of the agent a; acquired from
the virtual effector at instant ¢. Similarly functions are labeled. The central symbol for any
function is f, the left superscript designates the owner of the function and the subsystem
that this function produces the result of its computations for, the right superscript: 7, o,
e refer to the terminal, initial and error conditions respectively (each one of them being
a predicate). A missing right superscript denotes a transition function. The list of right sub-
scripts designates a particular function. Thus the internal structure of an agent is presented
in fig. 2.

2.2 General subsystem behaviour

Fig. 3 presents the general work-cycle of any subsystem s, where s € {c, e, r}, of the agent
a;. The functioning of a subsystem s requires the processing of a transition function which
uses as arguments the data contained in the input buffers ,s; and the internal memory °s;,

2

Inter-agent
transmission

CONTROL SUBSYSTEM

vein H Sein b beix W bein)

Effector A Effector Receptor A Agcgiregated
Y control state Y commands| readings

. VIRTUAL
> RECEPTOR

'R R
y T]akvlj){x TjakJJ

. VIRTUAL
7)) EFFECTOR

(E E
Yy ejanaa){x 6janaa

Effector A Effector Receptor A Receptor
Y control state Y commands| readings
o Ejn |1 vEin o0 [v
Ejn 1
REAL EFFECTOR REAL RECEPTOR
& /

Figure 2: Internal structure of an agent a;

to produce the output buffer values ,s; and new memory contents °s;. Hence the subsystem
behaviour is described by a transition function °f; defined as:
1 i S
P55] = 0085 o55): (1)
where i and i+1 are the consecutive discrete time stamps! and := is the assignment operator?.
Function (1) describes the evolution of the state of a subsystem s. A single function (1) would

be too complex to define it in a monolithic form, thus it is usually decomposed into a set of
partial functions:

1 a1t o

s 5T] = s o)), (2)
where v = 0,...,ny,. Capabilities of the agent arise from the multiplicity and diversity
of the partial functions of its subsystems. Such a prescription requires rules of switching

between different partial transition functions of a subsystem, thus three additional Boolean
valued functions (predicates) are required:

e °f?, defining the initial condition,
e °f7, representing the terminal condition and

s re . o
e °f5, representing the error condition.

Tt should be noted that although all the subsystems use the same symbol to represent the discrete time,
i.e. 7, in reality each one of them will have a different sampling period, thus they should be represented
differently. However using a different symbol for each subsystem would rather produce confusion or require
extra indices, thus making the outcome less intelligible. The time stamp of the initial step of execution of
any behaviour of any subsystem is symbolised by 4.

2The assignment operator “:=" in the specification of the Core Agent is abbreviated to just the symbol
w__»

The first one selects the transition function for cyclic execution, while the second determines
when this cyclic execution should terminate. The last one detects that an error has occurred.
Hence a multi-step evolution of the subsystem in a form of a behaviour B, , is defined as:

The execution pattern of such a behaviour is presented in fig. 3. The s;», where j* € {j, 7'},
denotes all subsystems associated with s; (in the case of the control subsystem some of those
subsystems even may not belong to the same agent, hence j' appears). In reality an error
condition °f%, does not have to be specified explicitly, as during code implementation any

error detected by the program will terminate the execution of the behaviour in which it
occurred, thus the same result will be attained.

!

Update the internal state and
_ compute values of the output buffers
s t+1 =+l . s g, St)
Sjav ’ y8j7v T f]’u Sja”’ :I:Sjﬂ)

A

Dispatch the results to the
associated subsystems

ySjv 7 aSj

Retrieve the current state from
the associated subsystems

7

Jv

FALSE S £ (8l)
| jul°5) 255 TRUE

Y FAILURE o)

‘ S £T 88i~, Si~ TRUE
FALSE< fj’u< 7 J)> ,l,

SUCCESS (s)

Figure 3: General flow chart of a subsystem behaviour °B,,, where e represents any subsys-
tem including another agent

The behaviours °B,, can be associated with the nodes of a graph and initial conditions
with its arcs, thus a finite state automaton representation results (fig. 4). The set of initial
conditions singling out the next behaviour to be executed can be used to define a state
transition table of the automaton. Behaviour selection represented by a hexagonal block is
executed as a stateless switch defined by the initial conditions *f,. °B; is the default (idle)
behaviour, activated when no other behaviour can be activated.

!

< Behaviour selection >
spo o oo N o ;\Sf;nfs g7
7,0 J sfe I fs spe J

; y il Y ;

sfe J,1
7,0 \
S
j70 3 il
(IDLE)(I)"'
ﬂsfir’OU —|S ;:1U —°

Figure 4: State graph of the behaviour selection automaton

3 Core agent ace

The core agent agent acq is described as a general embodied agent.

3.1 Virtual effector e_, body

The virtual effector €., 1,04, 18 responsible for controlling the body motions. It should be
noted that all the activities performed by the NAOqi functions are executed within the real
effector, thus NAOqi library is treated as an element of the real effector E_, . 1,,q,- Below the
contents of transmission buffers as well as the transition functions and terminal conditions
of the behaviours of the virtual effector are defined. A dash in the definition of a transition
function implies that a certain output variable or a certain set of output variables is not
assigned a value. This further implies that the values of those variables are not sent to
an associated subsystem. Usually such variables are not mentioned in the definition of the
transfer function, but if they appear in some iterations of the behaviour and in some they
do not, for the purpose of completeness the lack of value assignment is signalled by a dash.
Similarly, if a certain behaviour is based on a transition function that produces no output
values, this is signalled by a dash, otherwise one could come to a false conclusion that there
exist behaviours not based on transition functions. The global frame is initialized when the
robot is turned on and is fixed with the robot initial position.

3.1.1 Communication buffers and internal memory of the virtual effector e, 1,4,

e Internal memory ‘e, body

dja — desired joint angles with parameters (memorized argument of the
INTERPOLATION command)],
dja = [joints, values, fractionMaxSpeed], where:
joints — aname or names of joints,
values — one or more angles in radians,
fractionMaxSpeed — fraction of the maximum speed during the angles
interpolation,
tm — termination marker
pose — current robot position estimated by the Extended Kalman Filter (EKF),
pose = [x, v, 0], where:
x — current robot position with respect to the X-axis of the
global coordinate system, in meters,
y — current robot position with respect to the Y-axis of the
global coordinate system, in meters,
@ — current angle around the Z-axis, in radians.

E 3
e Real effector control e . o 10qy:

cmd — command from the virtual effector,
data name — data name of a parameter stored in a NAOqi ALMemory module,
velocity — velocity of motion with respect to the robot coordinate frame

(memorized argument of the MOVE command);
velocity = [vy, vy, w], where:

vy, — velocity along the X-axis, in meters per second,

vy — velocity along the Y-axis, in meters per second,

w — velocity the around Z-axis, in radians per second,
dpose — desired position with respect to the robot coordinate frame

(memorized argument of the MOVE command);
dpose = [x,y, 0], where:
x — distance along the X-axis, in meters,
y — distance along the Y-axis, in meters,
@ — rotation around the Z-axis, in radians,
ext collis — parameters for setting external collision protection for a given
robot body
ext_collis = [body, flag], where:

body — the name of the body {"All", "Move", "Arms", "LArm",

IIRArmH}
flag - TRUE when the body external collision protection has to
be enabled,
walk _arms — parameters for enabling robot arms while walking
walk arms = [left, right], where:
left ~— TRUE when the left arm has to be enabled,
right — TRUE when the right arm has to be enabled,
foot _prot — a boolean flag for setting foot contact protection. If the flag is TRUE
then the protection is enabled,
stiffness — name or names of joints for which stiffness will be set,
stiffness = [joints, values|, where:
joints — a name or names of joints,
values — stiffness value in the range of 0.0 and 1.0,
dpost — arguments for posture interpolation (memorized argument of the

POSTURE command),
dpost = [posture, speed], where:

posture — a name of a predefined posture to be attained,
speed — relative speed between 0.0 and 1.0,
dja — desired joint angles with parameters (memorized argument of the

INTERPOLATION command)],
dja = [joints, values, fractionMaxSpeed], where:

joints — a name or names of joints,
values — one or more angles in radians,
fractionMaxSpeed — fraction of the maximum speed during the

interpolation of angles,

e Proprioceptive input from the real effector Ze__ body"

3NAOQqi software controls NAO at 50 Hz, i.e. the control period is 20 ms, thus the motion increment must
be defined for that period — we call it real effector control step. Thus the sampling period of this virtual
effector is 20 ms.

attained — returns TRUE if the predefined posture or desired position was attained,
cpost — returns current robot posture,
cja — current joint angles,
cja = [joints, values|, where:
joints — a name or names of joints,
values — one or more angles in radians,
odm — current robot position expressed in Cartesian coordinates,
odm = [x,y], where:
x — current robot position with respect to the X-axis of the
global coordinate system, in meters,
y — current robot position with respect to the Y-axis of the
global coordinate system, in meters,
cmp — current motor positions,
value — current value of a parameter named as e, poqy[data_name]; this
value is transmitted to the control subsystem in response to its querry
im — current inertial measurement unit (IMU) data,
im = [0, w], where:
f# — current robot orientation angle around the Z-axis in radians,
w — velocity around the Z-axis, in radians per second,

e Input from the control subsystem je . . poay:

cmd - command from the control subsystem,

cmd € {MOVE, STOP, POSTURE, INTERPOLATION, GET},
arg — arguments from the control subsystem;

arg = [velocity, dpose, dpost, dja, data_name], where:

velocity

dpose

dpost

dja

stiffness

data name

e Proprioceptive output to the control subsystem je

velocity of motion with respect to the robot coordinate
frame (memorized argument of the MOVE command);
velocity = [vy, vy, w], where:

vy — velocity along the X-axis, in meters per second,
vy — velocity along the Y-axis, in meters per second,
w — velocity around the Z-axis, in radians per second,

desired position with respect to the robot coordinate frame
(memorized argument of the MOVE command);
dpose = [x,y, 0], where:

x — distance along the X-axis, in meters,
y — distance along the Y-axis, in meters,
0 — rotation around the Z-axis, in radians,

arguments for posture interpolation (memorized argument
of the POSTURE command),
dpost = [posture, speed], where:
posture — name of a predefined posture to be attained,
speed — relative speed between 0.0 and 1.0,
desired joint angles with parameters (memorized argument
of the INTERPOLATION command)],
dja = [joints, values, fractionMaxSpeed], where:

joints — a name or names of joints,
values — one or more angles in radians,
fractionMaxSpeed — fraction of the maximum speed

during the interpolation of angles,

name or names of joints for which stiffness will be set,
stiffness = [joints, values|, where:

joints — a name or names of joints,

value — stiffness value in the range of 0.0 and 1.0,
is a string that contains a name of a parameter stored in a
NAOqi ALMemory module. It is used to query the value of
the NAOqi parameter stored in the AlMemory module

core,body:

attained — TRUE if the predefined posture, desired interpolation or position was
attained or executed,
value — current value of a NAOqi parameter, named as data_name,
received from the AlMemory module.
pose — current robot position estimated by Extended Kalman Filter (EKF),
pose = [x, v, 0], where:
x — current robot position in X-axis in Cartesian coordinate sys-
tem in meters,
y — current robot position in Y-axis in Cartesian coordinate sys-
tem in meters,
6 — current angle rotated around Z-axis in radians.

3.1.2 Behaviour /B

e Transition function:

core,body ,idle

of the virtual effector e, 1,0q,

ki A +1 E] 7]
‘ efcore,body,idle - eeiore,body [pOSG] EKF(zCcore ,body [OdmL mezcore,body [lm]7 667(tzore,body [pOSG])

9 A 3 1 .
¢ Cfcore,body,idle - ;ezgre,body [pOSG] EKF(z€core ,body [Odm]7 xecore ,body [lmL 86z‘/ore,body [pOSG])

This transition function estimates the current robot position based on the data received
from the real effector E The EKF function is an Extended Kalman Filter

core,body*

e Terminal condition

z:—ore,body,idle é (Cecore body[d] MOVE) (m €core ,body [Cmd] - POSTURE)V
(;ecore body[d] - INTERPOLATION) (ac core ,body [Cmd] = GET)\/
(Cecore body[d] - STIFFNESS) (:B Ccore ,body [Cmd] MOVE_TO)

When one of the above mentioned commands is obtained from the control subsystem
the virtual effector stops being idle and immediately commences with the commanded
motion.

3.1.3 Behaviour /B of the virtual effector ¢

core,body,move core,body
e Transition functions:
“Bf core body,move =
([€eorenoaylemd] = MOVE ‘
S Ceamespody [Velocity] = S€lorebodylarg[velocity]]
5 €t boaylext_collis] = ["All”, FALSE] C for i = 4
Bt epoaywalk_arms] = [TRUE, TRUE]
| Eertl body[foot_prot] = TRUE)
i+1 for i # igN\
yecore body = ™ :&ceiore,body [cmd] # STOP
byjegrl&body [cmd] = MOVE for i # igA
' Ceorebody [velocity] =0 S€torebody cmd] = STOP

676fcore,body,move £
FALSE for i = iy
eei—o_rle,body [tm] = - for ¢ 7& ZO AP T core body[d] 7& STOP
TRUE fOI‘ 7/ % ZO /\ core body[] — STOP
e i+1

ecore,body [pOSG] EKF(T Core ,body [Odm]’ a:ecore body[.m]’ eeiore,body [pOSG])

) A i+1 .
¢ Cfcore,body,move - éez:ore,body [pose] EKF(T core ,body [Odm]7 xecore ,body [lm]7 eef:ore,body [pose])

9

This transition function transfers to the real effector F

corebody 0he command and the

velocity at which the body should move and subsequently monitors the input from

the control subsystem c

core*

The EKF function estimates the current robot position

using the Extended Kalman Filter (EKF). Once the STOP command is obtained from
the control subsystem the commanded velocity, for the real effector, is reset to zero.
Moreover, the estimated current robot position is transferred to the control subsystem

Ccore,body '

If the STOP command is not delivered the robot will, in principle, move

endlessly with the prescribed velocity. The NAOqi move function was used in the

activity of behaviour B

e Terminal condition:

€ LT

core,body,move

core,body,move*

A e

eiore,body [tm] = TRUE

The STOP command obtained from the control subsystem switches the termination

marker €¢e’
motion.

core,body

3.1.4 Behaviour /B

[tm] and this, in the next, control step causes the termination of the

of the virtual effector ¢

core,body,moveto core,body
e Transition functions:
e’Efcore ,body,moveto =
[(Ey €Lt hodylomd] = MOVE_TO)
Y éJorrle ,body [dpose] = :(Lfezore,body [arg[dpose]]
. ;rrle body [ext collis] = ["All”, FALSE] for i = 4,
B ooy [Walk_arms] = [TRUE, TRUE]
De ert! bodylfoot_prot] = TRUE)
Eyeéj;rle,body = for ¢ # 20/\
aczezore,body [Cmd] 7é STOP
Eyeiirle,body [Cmd] = STOP_MOVE for i # io/\
\ ;eiore,body [Cmd] = STOP
6’efcore,body,moveto =
(FALSE for ¢ = 4
o it o] = for i # o A S€lorepoaylcmd] # STOP
Ceorebody "™ =\ TRUE for i # iy A Cloreodylcmd] = STOPV

eei+l

\

e,Cf A cei—l—l
core,body,moveto ~— y“core,body

This transition function transfers to the real effector E

E i
zCcore body[

attained] = TRUE

core,body [pose] EKF(T core ,body [Odm]’ xecore ,body [lm]7 eeiore,body [pOSQ])

[pOSG] EKF (z€core ,body [Odm]7 :L"ecore ,body [lm]7 eeéore,body [pose])

core.body 0h€ command and the

desired robot position with respect to the robot coordinate frame and subsequently

10

monitors the input from the control subsystem c. . The EKF function estimates the
current robot position using the Extended Kalman Filter (EKF). Once the STOP com-
mand is obtained from the control subsystem the movement is terminated. Moreover,
the estimated current robot position is transferred to the control subsystem c

core,body*
The NAOqi moveto function was used in the activity of behaviour ;B

core,body,moveto*

e Terminal condition:

ert A e i _
core,body,moveto ~ ecore,body [tm] = TRUE

The STOP command obtained from the control subsystem switches the termination

marker “el, .. poq, [tm] and this, in the next, control step causes the termination of the
motion.

3.1.5 Behaviour fB of the virtual effector ¢

core,body,posture core,body
e Transition function:
7E A
‘ fcore,body,posture -
(P etiiepoaylomd] = GO_TO_POSTURE
1 .
Eyefzire,body [deSt] = ;eéore,body [arg[dposﬂ] for 1 = ?:0
Zei;’rlebo ay[stiffness] = ["Body”, 1.0]
E i+l . .
yeiore body — fOI' 1 7é 20/\
:gezcore,body [Cmd] # STOP
141
Eyezjre,body [Cmd] = STOP_MOVE for ¢ 7& ZO/\
:gef:ore,body [Cmd] = STOP
> A
‘ cfcore,body,posture -
» B €l oreodyattained] for new (Fel . poq [attained]
i .
yCeore,body [AttaINEd] = ¢ FALSE fOr £€% 1 poay [cmd] = STOP
— otherwise

;ef;)rrl@body [pOSG] EKF(zCcore ,body [Odm]7 :Eecore ,body [Hn]? eeiore,body [pOSG])

where new is a predicate being TRUE when a new value of its argument is obtained.

e’efcore,body,posture =
(FALSE for i = i,
“Comrebody[t] = { TRUE for i # 00 A £€eorebodylcmd] = STOPV

new (Eei [attamed]))

x~core,body

eei;rle,body [pOSG] EKF £E €core ;body [Odm]7 xecore ,body [lm]7 eeiore,body [pOSG])

11

This transition function transfers to the real effector E, .14, the predefined pos-
ture to be attained with the relative speed. Once the STOP command is obtained
from the control subsystem the commanded posture interpolation is terminated. The
EKF function estimates the current robot position using the Extended Kalman Filter
(EKF). The NAOqi goToPosture function was used in the activity of the behaviour
B orebody. posture: UpoN termination of this behaviour the real effector £ 1,04, trans-
fers to the virtual effector e ... ,,qy the information whether the posture was attained.
This information and the estimated current robot position by EKF are further trans-

ferred to the control subsystem c.q 1,04y -

e Terminal condition:

ert A et —
core,body,posture — ecore,body [tm] = TRUE
The termination marker °ef, . 1,q,[tm] is switched when the STOP command is ob-

tained from the control subsystem or the information about the posture interpolation
is obtained from the real effector F' . ,q,- The value TRUE of the termination marker
causes the termination of the behaviour in the next control step.

3.1.6 Behaviour fB of the virtual effector ¢

core,body,inter core,body

e Transition function:

e, B Y
core,body,inter —
f bod
(B et poaylomd] = SET_ANGLES
i+1 : i .
Eyef:j)rre,body [dja] = :(Ejez:ore,body [arg[dja]] fOT 7, = io
geitrlebo ay[stiffness] = [dja, 1.0]
geé—grle,body == for i # g\
:Jgezcore,body {Cmd] % STOP
i+1
Eyezj;re,body [Cmd] = STOP_MOVE for ¢ 7& Zo/\
\ :geiore,body {Cmd] = STOP
A
€7Cfcore,body,imter =
A TRUE for eqéore’body[dja] = geiore’body[cja}
gj@grle,body [attained] = ¢ FALSE for fei. poqy[cmd] = STOP
— otherwise
1 .) . .
gef:j)rre,body [pose] = EKF < geZore,body [Odm]7 geéore,body [lm]7 eeéore,body [pOSG])

12

e,ef L
core,body,inter —

(FALSE for ¢ = 14
- for ¢ 7é io/\
gefzore,body [Cmd] 7& STOP
i TRUE for i # ig/
Cers s 1] = (e = S0P
eeiore,body[d‘]a] zCcore body[cja] v
new < B el orebody [attamed]))
] : 3 : 7 . .
eef:j)_rle,body [dJa] = geéore body [arg[d.]a]] for i = 0
66f:irle,body [pose] EKF x core ,body [OdmL :cecore ,body [Hn]? eelcore,body [pose])

\

This transition function transfers to the real effector £, 1,,q, the vector of joint angles
and the fraction of maximum speed. The NAOqi setAngles function was used in the
activity of the behaviour {B., . 1odyinter- Lhe EKF function estimates the current
robot position using the Extended Kalman Filter (EKF). Once the STOP command is
obtained from the control subsystem the commanded joint interpolation is terminated
and the real effector E .4, T€turns to the virtual effector e, },,q, the information
whether the posture was attained. This information and the estimated current robot

position are transferred to the control subsystem ¢, pody-

e Terminal condition:

err A e
core,body,inter —

eiore,body [tm] = TRUE

The termination marker °ef, . 1,q,[tm] is switched when the STOP command is ob-
tained from the control subsystem or the desired joint angles are attained. The value
TRUE of the termination marker causes the termination of the behaviour in the next
control step.*

3.1.7 Behaviour /B of the virtual effector e

core,body,set stiffness core,body

e Transition function:

. et oslemd] = STIFFNESS_INTERPOL
e, AN o .
f core,pody stifiness = gegrzvls[stiffness] = L€l slarg[stiffness]]

é e 1+1

€core body [pOSG] =

e,e
fcore,body,stiffness
EKF :E Ccore ,body [Odm}? recore ,body [lm]7 eeéore,body [pOSG])

e,c A ¢ i+l et
fcore,body,stiffness - yecore,body [pOSQ} EKF(x core ,body [Odm]7 xecore ,body [1m]7 ecore,body [pOSG])

4The equality of current and desired position should be treated approximately — as in any system taking
into account noisy measurements.

13

This transition function transfers to the real effector F_ ., 1,4, the stiffness parameters
to be set for the given joints and using Extended Kalman Filter (EKF) estimates the
current robot position. The NAOqi stiffnessInterpolation function was used in the

iy . e
activity of the behaviour B . 1ody stiffness-

e Terminal condition:

"fl £ TRUE

core,body ,stiffness

This is a one step behaviour, so the terminal condition is TRUE.

. e :
3.1.8 Behaviour B . ody et Of the virtual effector e .. 1,0q,

e Transition function:

c, i+1 _ E i
yecore,body - fOI’ —|new< xecore,body [Value]>
€,c Ay c i+l __E_i E i
fcore,body,get - yecore,body [Value} - zecore,body [Value] fOF new(acecore,body [V&hl@])
c, i+1 _ E i E i : et
yecore,body [pOSG] - EKF< xecore,body [Odm]’ xecore,body [lm]’ 6core,body [pOSQ])

where new is a predicate being TRUE when a new value of its argument is obtained.

e,Ef 'y
core,body,get
E i+l .
yecore,body [Cmd] - GET_DATA . ‘ .
E i+l e or =1
yCeore.body [data name] = #€eorebody larg[data_name]]
E i+l _ . .
yecore,body - fOI‘ 7 7é 10
e,ef A
core,body,get —
(FALSE for i = ig
e pitl tm] = { for i # ig A ﬂnew< Coorebody [Value]>
core,body -
TRUE for i # ig A new (B et orebody [Value]>
e i+1 _ E i E i : e,
\ ecore,body [pOSG] - EKF< :Becore,body [Odm}? xecore,body [lm]7 ecore7body [pOSG])

The transition function returns to the control subsystem je the current value

c 1+1 . .
of a parameter yecore’body[value] named as data name. It estimates using Extended

Kalman Filter (EKF) the current robot position.

core,body

e Terminal condition:

A
¢ zore,body,get = eeZore,body [tm] = TRUE
The termination marker eef:ore’body [tm] is switched when the value of the desired param-

eter is obtained from the real effector E_ .4, The value TRUE of the termination
marker causes the termination of the behaviour in the next control step.

14

°B
+ ™ core,body,posture

B
+”core,body,moveto

o =POSTURE

chore,body,idle chore,body,inter

o0 = INTERPOLATION
o =MOVE

chore,body,get

cRB .
+®core,body,stiffness

e
+Bcore,body,move

Figure 5: FSM governing the activities of the body virtual effector €, 1,,q, Of the core agent
Qcores O £ xceiore,body [Cmd]

3.1.9 FSM governing the virtual effector e 1,04,

The seven state automaton (FSM) governing the activities of the body virtual effector

€core body 15 Presented in fig. 5.

3.2 Virtual effector e

core,ls

The virtual effector e controls the loudspeaker.

core,ls

3.2.1 Communication buffers and internal memory of the virtual effector ¢,

e Internal memory ‘e,

tm — termination marker

E)
e Real effector control e ..

cmd — command from the virtual effector,
text — current text to synthesize,
data_name — data name of a parameter stored in a NAOqi ALMemory module,
fp — the path to the file that will be reproduced,
begin _position -~ position in second where the playing should begin,
params — loudspeaker virtual effector parameters,
params = [dvt, dl, dv, spr|, where:
dvt — desired voice type,
dl - desired language,
dv — desired volume,
spr — stereo panorama requested (-1.0 : left, 1.0 : right,
0.0 : center),
e Proprioceptive input from the real effector Je,.. i:
synthesized — returns TRUE when the current text synthesis is finished
value — current value of a parameter named as geiﬁ%body [data_ name]

e Input from the control subsystem ge ..

15

cmd — command from the control subsystem, cmd € {SAY,PLAY,STOP, GET},
arg — arguments from the control subsystem,

arg = [text, fp, params, data_name, volume, spr, playLoop,

begin _position], where:

text — the text to be transformed into the synthesized
sound,
fp — the path to the file that will be reproduced,
params — loudspeaker virtual effector parameters,
params = [dvt, dl, dv, spr], where:
dvt — desired voice type,
dl - desired language,
dv — desired volume,
spr — stereo panorama requested (-1.0 : left,
1.0 : right, 0.0 : center),
data_ name — data_name is a string that contains a name of

a parameter stored in a NAOqi ALMemory
module, it is used to query the value of the NAOqi
parameter stored in the AlMemory module,

playLoop — plays a file in a loop if the flag is set to TRUE,
otherwise plays once,
begin position — position in second where the playing should begin,

e Proprioceptive output to the control subsystem je., .

reply — information about the termination of sound synthesis,
value — current value of a NAOqi parameter, named as data_name,
received from the AlMemory module.

3.2.2 Behaviour /B of the virtual effector ¢

core,ls,idle core,ls

e Transition function:

e Ay i+1
fcore,ls,idle - yecore,ls -

e Terminal condition:

< Z:—ore,ls,idle é (acceiore,ls [Cmd] = SAY) \ (afef:ore,ls [Cmd] = PLAY) \ (geiore,ls [Cmd] = GET)
\/(geéoreJS [emd] = SET PARAMS) Vv (iefme,ls [emd] = STOP)

When one of the above mentioned commands is obtained from the control subsystem
the virtual effector stops being idle to immediately commence with the commanded
behaviour.

16

3.2.3 Behaviour fB of the virtual effector ¢

core,ls,say core,ls

e Transition function:

e, B A
fcore,ls,_say -
(Eyez:—(i)_r{e,ls [Cmd] = SAY
gez)rrle,ls [teXt] = :(cjef:ore,ls[arg[teXtH for i = io
%ei—é—rle,ls[para’ms[dl“ - mcef:ore,ls[arg[pa’rams[dl]]]
geg—rle,ls = for ¢ 7£ iO N zceiore,ls [Cmd] 7é STOP
| Dbl s[cmd] = STOP_ALL for i # ig A $€ e s[cmd] = STOP
FALSE for i = i
for i # g A elores[cmd] # STOP
e,e A e d _
fcore,ls,say - ecirle,ls [tm] - TRUE for 1 7& ZO A <:c core Is [Cmd] = STOPV
Bl oo s[synthesized] = TRUE>

e,c AN z+1
fcore Is,say y core,ls [rePIY]

{TRUE When< el [synthesized] = TRUE) (i reslomd] _STOP>

T~ core,ls

— otherwise

These transition functions transfer to the real effector F_, ., the text to synthesize
and subsequently monitor the input from the control subsystem c, .. Once the STOP
command is obtained from the control subsystem the commanded text synthesis is
interrupted. If the STOP command is not delivered the sound will be, in principle,
synthesized until the information about synthesis termination will be obtained from
the real effector £, .. It should be noted that the activities performed by the NAOqi

say or stopAll functions are executed within the real effector F ..

e Terminal condition:

ert A e i
core,ls,say — © I [t
Js,say core,ls

m| = TRUE

The termination marker “ef, .\ [tm] is switched when the STOP command is obtained
from the control subsystem or the information about synthesis termination is delivered
by the real effector F ... The value TRUE of the termination marker causes the
termination of the behaviour in the next control step.

3.2.4 Behaviour fB of the virtual effector ¢

core,ls,play core,ls

e Transition function:

17

e’Ef core,ls,play £
(Delt o lemd] = PLAY FILE IN LOOP)
el fP] = Ceore,is[ar8[p]]
Eeitl [paramsldv]] = ek, Jarglparams[dv]] for playLoop =TRUE
Beeesparamsfspr]] = fel .\ [arg[params[spr]]])
Bttt islemd] = PLAY FROM_ POSITION)
L;eijrle,ls[fp} = 2€eorels [arg|fp]]
Eyeijrle,ls[params[dv]] = 2Ceore, is[arg[params[dv]]] for playLoop = FALSE
€t s[params{spr]] = 7Cecores[arg[paramsspr]]]
Eyeiz;le’ls[begin_position] = fehoerslarg[begin_position]]

V

These transition functions transfer to the real effector £, the command, path to
the file that will be played, volume and the balance. It should be noted that all the
activities performed by the NAQOqi playFileInLoop or playFileFromPosition function
are executed within the real effector £

core,ls*

e Terminal condition:

TFT £ TRUE

core,ls,play
This is a one step behaviour, so the terminal condition is TRUE.

3.2.5 Behaviour /B of the virtual effector ¢

core,ls,stop core,ls

e Transition function:

s Bertl [emd] = STOP_ALL

6,Ef N
core,ls,stop — Y core,ls

These transition function transfer to the real effector £, the command to stop
sound synthesis. It should be noted that the activity performed by the NAOqi stopAll

function is executed within the real effector £, .

e Terminal condition:

TFT £ TRUE

core,ls,stop

This is a one step behaviour, so the terminal condition is TRUE.

3.2.6 Behaviour /B of the virtual effector ¢

core,ls,set _params core,ls
e Transition function:
Eeitl | [emd] = SET_ PARAMETERS
e, Ef 2 Yy ~core,ls —
core,ls,set params E _i+1 _cut
- yecore,ls [params] - :pecore,ls [arg [params]]
This transition function transfers to the real effector E_ . the parameters obtained

from the control subsystem. It should be noted that all the activities performed by the

NAOdqi setParameter and other functions are executed within the real effector F_, .

18

e Terminal condition:

TFT £ TRUE

core,ls,set params

This is a one step behaviour, so the terminal condition is TRUE.

3.2.7 Behaviour B .. Of the virtual effector e

core,ls

e Transition function:

e Cf A ;ez—(i)_rle,ls = for _‘new(geéore,ls [Value]>
core,ls,get = . . .
el ci+1 _FE_i E i
yecore,ls [Value] - xecore,ls [Value] for new(mecore,ls [Value])

where new is a predicate being TRUE when a new value of its argument is obtained.

e, E S
fcore,ls,get -
E _i+1 .
yecore,ls [Cmd} — GET_DATA f - ‘
Egitl _ cgi or 1 =19
yecore,ls [data—name] - xecore,ls [arg [data_name]]
E _i+1 _ . .
yecore,ls - for ¢ 7é 10
FALSE for i =1y
e,e A e i+1 o - for 1 # 20 A _|IleW< e 1 [Value]>
fcore,ls,get - 6t:ore,ls [tm] — T ~core,ls

T core,ls[

TRUE for i # ig A new(E el value})

The transition function returns to the control subsystem ;e the current value of

c i+1
the parameter yec’ . | [value] named as data_name.

core,ls

e Terminal condition:

°fr £ cel 1s[tm] = TRUE

core,ls,get — “core,ls

The termination marker el . [tm] is switched when the value of a desired parameter
is obtained from the real effector F . ;. The value TRUE of the termination marker

causes the termination of the behaviour in the next control step.

3.2.8 FSM governing the virtual effector e

core,ls

The five state automaton (FSM) governing the activities of the loudspeaker virtual effector
is presented in fig. 11.

6core,ls

3.3 Virtual receptor r

core,mic

The virtual receptor r .. i is responsible for acquiring and aggregating data obtained by
the microphones. It should be noted that all the activities performed by the NAOqi functions
are executed within the real receptor, thus NAOqi library is treated as an element of the
real receptor R ., .- Below the contents of transmission buffers as well as the transition
functions and terminal conditions of the behaviours of the virtual receptor are defined. A
dash in the definition of a transition function implies that a certain output variable or a
certain set of output variables is not assigned a value. This further implies that the values

19

°B
+M™core,ls,set_params

e
+Bcore,ls,stop

e e
+Bcore,ls,get +Bcore,ls,say

chore,ls,play

Figure 6: F'SM governing the activities of the body loudspeaker effector e, s of the core
agent Qcore; O =S afef:ore,ls [Cmd]

of those variables are not sent to an associated subsystem. Usually such variables are not
mentioned in the definition of the transfer function, but if they appear in some iterations of
the behaviour and in some they do not, for the purpose of completeness the lack of value
assignment is signalled by a dash. Similarly, if a certain behaviour is based on a transition
function that produces no output values, this is signalled by a dash, otherwise one could
come to a false conclusion that there exist behaviours not based on transition functions.

3.3.1 Communication buffers and internal memory of the virtual receptor 7., i

e Internal memory "r

core,mic*

rd — contains raw data from the microphones,
tm — termination marker,
silence — maximum number of iterations during which silence in speech is
. Chl : [
acceptable. xrcore,mic[arg[tlme” or xrcore,mic[arg[St]L
cit — counter (iterator),

e Real receptor control 1;7’

core,mic*

rec — TRUE when the recoding is to be triggered,
FALSE when it is to be stopped,
cmd — command from the virtual receptor,
data _name — data name of a parameter stored in a NAOqi ALMemory module,
fp — file containing the recorded signal samples,
threshold — threshold required for word recognition,

e Input from the real receptor fr ..
enrg — contains signal energy for each microphone,
value — current value of a parameter named as ;7. (oucn[data_namel; this
value is transmitted to the control subsystem in response to its query
r'w — contains a list of pairs,
rw = [(recog_ word, recog_prob), ...], where:
recog__word — recognized word,
recog prob — probability of correct speech recognition for

recog word,

20

e Input from the control subsystem Sr

core,mic"*

cmd — command from the control subsystem,
cmd € {RECORD, REGISTER, ABORT, RECOGNIZE, GET},
arg — arguments from control subsystem,
arg = [params, dct, data_name, fp, sampling period, time, enrg,
st], where:
params — contains microphone parameters such as: sample
rate and microphone channels,
dct — contains the list of words that should be recognized,
data name — is a string that contains a name of a parameter

stored in a NAOqi ALMemory module. It is used
to query the value of the NAOqi parameter stored
in the AlMemory module

fp — file containing the recorded signal samples,

sampling _period — sampling period of microphone virtual receptor 7 ... mics
time — commanded duration of the recording,

enrg — threshold of signal energy for microphones,

st — time during which the microphone signal energy is

compared with the threshold. When during this
time the signal will be lower than the threshold
then the recording stops,

threshold — threshold required for word recognition,

e Output produced by the virtual receptor for the control subsystem /r

core,mic*

rec — TRUE when the recoding is terminated,
W — recognized word with the biggest probability of word recognition,
value — current value of a NAOqi parameter, named as data_name,

received from the AlMemory module.

3.3.2 Behaviour /B of the virtual receptor r

core,mic,idle core,mic

e Transition function:

rf A ,r,i+1
core,mic,idle = y' core,mic

e Terminal condition:

LT A(ci
i

core,mic,idle xrcore,mic [Cmd] = RECOR‘D) \ (;:Tzzore,mic [Cmd] = REGISTER)\/
(;T(;ore,mic [Cmd] = GET) \4 (accriore,mic [Cmd] = RECOGNIZE)

When any of the above mentioned commands is obtained from the control subsystem

the virtual receptor stops being idle and immediately transfers to a state in which it

gathers sound samples.

3.3.3 Behaviour /B 4 of the virtual receptor r

core,mic,recor core,mic

e Transition functions:

21

?R A
" fcore,mic,record -
[Brifl lemd] = START_RECORDING .
) j or 1 =1
};rztjrle,mic [fp] = ;réore,mic [arg[fp“
1 R+l for i # ig Ai < g+
yrcore,mic - rri-i-l ' [Sﬂence]
core,mic
Rpitl — for i =i
Weemiclemd] = STOP_RECORDING for i Ole
\ rcore,mic [Sl ence]
b A
" chore,mic,record —
(FALSE for i = 4,
— fOYZ#Zo/\Z<Zo+
Trzc—(’)—rleymic [tm} - TTZC—(')_rle,mic [Sﬂence]
TRUE for i = ig+
.) Trf;)rrle,mic [Sﬂencg]
\ Trégrleymic [Sﬂence] = gréor‘%mic [arg[time“/gréore,mic [arg[samphng_periOdH fOI‘ Z = Z'0

TRUE for i = ip+

r,c A c i+l _ ritl ;
fcore,mic,record - yrcoreﬂnic [I‘GC] - Tcore,mic [SlleHCe]
— otherwise

These transition functions transfer to the real receptor R
destination file path, where the sound will be recorded. The virtual receptor r

initiates the recording and if

r oi+1
at the most "7l i

the command and the

core,mic

core,mic

in the speech a period of silence occurs then it waits

[silence]| iterations and stops recording. The recording is done

by the NAOqi function startMicrophonesRecording. When the time elapses then the
virtual receptor calls the NAOqi function stopMicrophonesRecording and the recording

is terminated.
Terminal condition:

TLT

core,mic,record ~

The termination marker "r¢

core,mic

= rriore,mic [tm] = TRUE
i+1

core,mic

[tm] is switched after "r [silence] iterations. The

value TRUE of the termination marker causes the termination of the behaviour in the

next control step.

3.3.4 Behaviour /B

core,mic,register

e Transition functions:

of the virtual receptor r

core,mic

22

r,Rf A
core,mic,register —

[Bride mielemd] = START_RECORDING)
Rt o) O melonelfo] .
Ayt miclenable_mic_comp] = TRUE for i =i
. IZ Zﬁrle mic [params} = éréore,mic [arg[ParamSH)
for ¢ 75 20\
T remic = — "Thore,mic|Cit] <
"Toremic [silence]
4 for @ # oA\
I;Tz:irle,mic [emd] = STOP_ RECORDING Triore,mic lcit] =
("7 oremic silence]
Tﬂ‘fcore mic reglster -
FALSE for i =1y
T e el { for i 7 io AT ore mic [cit] < Tl oo mic [Silence]
TRUE for "7l miclCit] = "7 mic[silence]
" iﬁrz mic|silence] =
§Tcore miclarg[st]]/ &r f:ore miclarg[sampling period]] for i = i
0 for i = gV
rTf:j)je,mic [Clt] - I;Tiore mic [enrg] el xréore mic [arg[enrg]]
\ Trcore mic [Clt] +1 fOI‘ T éore mic [enrg] < xrcore mic [arg[enrg]]
s 2 Ti5elree] = { TP (o8 1) = ol

These transition functions transfer to the real receptor R, ;. the command, the desti-

nation file path, recording parameters and they additionally enable microphone compu-

tations. The virtual receptor r .., ;. initiates the recordlng and waits "0l i [silence]

1terat10ns until the microphone energy measurement 77 . [enrg| surpasses the thresh-
old 7%, miclarglenrgl]. If none of the measurements exceeds the threshold then the

behaviour terminates. The recording is done by the NAOqi function subscribe. When

the sampling time is exceeded then the virtual receptor calls the NAOqi function un-

subscribe and then the recording is terminated.

Terminal condition:

reT A r g _
core,mic,register ~ rcore7mic [tm] = TRUE
. . . roitl . .
tm] is switched when during core.mic|silence] itera-

tions each microphone energy measurement %ri . . [enrg] does not exceed the thresh-
old ¢r! |arglenrg]|. The value TRUE of the termination marker causes the termi-

T core, mic

nation of the behaviour in the next control step.

r,
The termination marker "r{ . il

23

3.3.5 Behaviour /B : of the virtual receptor r

core,mic,recog core,mic

e Transition functions:

" Rfcore mic,recog é
((%rifl lemd] = SUBSCRIBE

y Q)Lrle mic [dCt] - iriore,mic[arg [dCtH for i = to

y é—(l)—rle mic [Cmd] - GET_DATA
< ” z?:rle i.|data_name] = LastWordRecognized fori=ip+1

. for i > i 1

Bypitt miclemd] = UNSUBSCRIBE or 1> 19+ 1A
| neW < }ircore mlC [rw])

Tomemic = otherwise

y' core,mic

where new is a predicate being TRUE when a new value of its argument is obtained.

T rf Ay
core,mic,recog ~

FALSE for ¢ = io
rri-l-l) [tm] —_ — for ¢ 7A 10
’ TRUE for new < By [rw])

' core,mic

T mic/threshold] = ¢t . [arg[threshold]] for i = i

core mic

fSt (x core mic [rw]> fOY new < Ijrtltore mic [rw]) /\

fst (Ry [rw [recog_prob]]) >

x core mic

Ty
f Ttore.mic threshold]
r,c A c i+ . .
fcore,mic,recog - yrcore,mic[W] - Empty for new<§réore’mic [I'W])/\

fst < Ry [rw [recog_prob]]) <

x core mic

Tyl [threshold]

core mlC
— otherw1se

These transition functions transfer to the real receptor R, ;. the recognition com-
mand (initiated by a subscription to a recognition module) and the dictionary with
words to be recognized by the NAOqi functions. In the next iteration it sends to the
real receptor the query to get the value of LastWordRecognized. If the subsequent iter-
ations a new value appears in the buffer fr . [rw| then the virtual receptor sends to
the real receptor a command to terminate the subscription. Additionally the transition

function returns to the control subsystem ;r the recognized word ¢’ . Trw].

core,mic Y core mic

e Terminal condition:

i Zore,mic,recog é T,riore,mic [tm] = TRUE
The termlnatlon marker "7, ni.[tm] is switched when the new value appears in the
buffer i . ni[rw] from the real receptor Reoromic- The value TRUE of the termination
marker causes the termination of the behaviour in the next control step.

24

. ’ .
3.3.6 Behaviour [B . g Of the virtual receptor r ..

e Transition function:

ch A gjrzl_rle,mic = - for _‘new<};r(i:ore,mic [Value]>
core,mic,get = . . .

cpitl __ R, R,.i

yrcore,mic [Value] - xrcore,mic [Value] for new< acTcore,mic [Value]>

where new is a predicate being TRUE when a new value of its argument is obtained.

R N
fcore,mic,get -
R,.i+1 B
yrcore,mic [Cmd] - GET_DATA ; . .
R,.i+1 e or i = 1y
o coremicldata_name] = 2ri . [arg[data_name]]

R+l _ o
yrcore,mic - for 4 7é Lo

FALSE for i = 4

e Aorpitl o) = for i # ig A ﬂnew<}§réore7mic [ValueD
core,mic,get — core,mic -

TRUE for i # ig A new(ﬁréore,mic [Value])
The transition function returns to the control subsystem ;r .. ;. the current value of

o1 [value] named as data_name.

C
the parameter o7 core,mic

e Terminal condition:

"fT £yl [tm] = TRUE

core,mic,get — core,mic

The termination marker "7, :.[tm] is switched when the value of a desired parameter
is obtained from the real receptor R, .- The value TRUE of the termination marker

causes the termination of the behaviour in the next control step.

3.3.7 FSM governing the virtual receptor 7. i

The five state automaton (FSM) governing the activities of the microphone virtual receptor

r is presented in fig. 7.

core,mic

3.4 Virtual receptor r ..

The virtual receptor r , informs the control subsystem about the current status of its

touch sensors.

core,touc

3.4.1 Communication buffers and internal memory of the virtual receptor ...

e Internal memory "7 . touch:

tm — termination marker

e Real receptor control 7 .. oucn:
cmd — command from the virtual receptor,
data name — data name of a parameter stored in a NAOqgi ALMemory module,

25

" Beore.mic.regt
+~core,mic,register

o = REGISTER

N : N - ™ B .
core,mic,get core,mic,idle core,mic,reco
b))) b ’

o = RECOGNIZE

o = RECORD

T B .
+~core,mic,record

Figure 7: FSM governing the activities of the microphone virtual receptor r of the

core,mic

N
core agent deore; 0 = °1° [emd]

z' core,mic

e Input from the real receptor &r_ . .-
value — current value of a parameter named as 7., (ouen[data_name]; this

value is transmitted to the control subsystem in response to its query

e Input from the control subsystem Sr

Core,touch:
cmd - command from the control subsystem,
cmd € {GET},
arg — arguments from the control subsystem:;
arg = [data_name|, where:
data_name — 1is a string that contains a name of a parameter stored in a

NAOqi ALMemory module. It is used to query the value of
the NAQOqi parameter stored in the AlMemory module

e Output produced by the virtual receptor for the control subsystem {7 ... iouch:
value — current value of a NAOqi parameter, named as data_name,

received from the AlMemory module.

3.4.2 Behaviour /B of the virtual receptor r

core,touch,idle core,touch

e Transition function:

r A i+1 _
fcore,touch,idle - yrcore,touch -
e Terminal condition:
reT A cpi _
core,touch,idle — xrcore,touch [Cmd] - GET
When above mentioned command is obtained from the control subsystem the virtual
receptor stops being idle and immediately commences with the commanded get be-

haviour.

3.4.3 Behaviour [B_ omg Of the virtual receptor r

core,touch

e Transition function:

26

cpitl - for —new < Ry [Value])

ch A y' core,touch = z' core,touch
core,touch,get = . . .
) ’ i1 _ R, R,
yrcore,touch [Value] - zTcore,touCh [Va‘lue] for new(xrcore,touch [Vahle]>

where new is a predicate being TRUE when a new value of its argument is obtained.
A

r,Rf
core,touch,get

R,.i+1 o
yrcore,touch [Cmd] - GET_ DATA . . .
R,i+1 e or 1 =19
yrcore,touch [data—name] - zTcore,touch [arg [data_nameH

R, .i+1 _ . .
yrcore,touch - fOI' 2 7é 10

FALSE for i =1y
ey A it tm] = { for i # ig A —mew(iriere’touch [Value])

core,touch,get — core,touch
TRUE for i # ig A new<RrZ [Value]>

z' core,touch

The transition function returns to the control subsystem /7. o the current value

ci+1
of a parameter ;17 . [value] named as data_name.

e Terminal condition:

"fT £yl [tm] = TRUE

core,touch,get — core,touch

The termination marker "7, iouen[tm] is switched when the value of a desired param-
eter 18 obtained from the real receptor R .. jouen- The value TRUE of the termination

marker causes the termination of the behaviour in the next control step.

3.4.4 FSM governing the virtual receptor r

core,touch

The two state automaton (FSM) governing the activities of the touch virtual receptor

T core touch 18 Presented in fig. 8.
r
Q +Bcore,touch,idle

oc=GET

r
e +Bcore,touch,get

Figure 8: FSM governing the activities of the touch virtual receptor r ,, of the core

core,touc

. D ¢
agent Qeore; 0 = xrcore,touch [Cmd]

3.5 Virtual receptor 7., etial

The virtual receptor 7 .. ieria gathers data fom the accelerometer and gyroscope. Tt may
return to the control subsystem the current 3-axis revolute velocities and accelerations the
center of the body with respect to the robot torso. Moreover, it provides the calculated orien-
tation angles of the body using the data acquired from the gyroscope and the accelerometer.

27

3.5.1 Communication buffers and internal memory of the virtual receptor 7_ . crtial

e Internal memory "7 .. inertial:

tm — termination marker

R :
e Real receptor control /7 ,.c inertial’

cmd — command from the virtual receptor,
data name — data name of a parameter stored in a NAOqgi ALMemory module,

e Input from the real receptor &r_ . ..
value — current value of a parameter named as 7., . inemia[data_name]; this

value is transmitted to the control subsystem in response to its query

C .
e Input from the control subsystem [r

cmd — command from the control subsystem; cmd € {GETY,
arg — arguments from obtained from the control subsystem;
arg = [data_name|, where:
data_name — 1is a string that contains a name of a parameter stored in a

NAOqi ALMemory module. It is used to query the value of
the NAOqi parameter stored in the AlMemory module

e Output produced by the virtual receptor for the control subsystem ;7 ... inertial’

value — current value of a NAOqi parameter, named as data_name, received from
the AlMemory module.

3.5.2 Behaviour /B of the virtual receptor r

core,inertial,idle core,inertial

e Transition function:

rf Ay ri+1 _
core,inertial,idle — y' core,inertial —

e Terminal condition:

T A cpi _
core,touch,idle ™ xrcore,inertial [Cmd] = GET

When the above mentioned command is obtained from the control subsystem the
virtual receptor stops being idle and immediately commences with the commanded
send behaviour.

3.5.3 Behaviour /B . of the virtual receptor r

core,inertial,ge core,inertial

e Transition function:

c.i+1 _ R, .i
ch A yrcore,inertial - for _|Il€W< :vrcore,inertial [Va‘lue]>
core,inertial,get = . . .
’ ’ c i+1 _ R, R, i
chore,inertial [Value] - rrcore,inertial [Value] for new(mrcore,inertial [Value]>

where new is a predicate being TRUE when a new value of its argument is obtained.
A

R
f core,inertial,get

R, .i+1 o
yrcore,inertial [Cmd] - GET_DATA . »
R,.i+1 for i = iy
yrcore,inertial

Rit1 o S
y" core,inertial — for i #£ g

[data_name] - gréore,inertial[arg[data’_name}]

28

FALSE for i =1y
T:T’f A ritl [tm} — - for 4 7£ iO A _‘new<}§riore,inertial [Value])

core,inertial,get — Tcore,inertial
TRUE for i # ig A new(Rr [Value]>

)
x' core,inertial

The transition function returns to the control subsystem ;r

c..i+1
o7 eore.inertial VAlUE] named as data_name.

coreinertial V1€ current value

of a parameter

e Terminal condition:

rfT £y [tm] = TRUE

core,inertial,get — core,inertial

i

The termination marker "r¢, . ;oo [tm] is switched when the value of a desired param-
eter is obtained from the real receptor R, inertia1- Lhe value TRUE of the termination
marker causes the termination of the behaviour in the next control step.

3.5.4 FSM governing the virtual receptor r

core,inertial

The two state automaton (FSM) governing the activities of the inertial virtual receptor

presented in fig. 9.
Q Z_Bcore,inertial,idle

. o =GET
@ ilgcore,inertial,get

Figure 9: FSM governing the activities of the inertial virtual receptor 7., ieria Of the core

Tcore,inertial 1S

eyl [emd]

z' core,inertial

A
agent Qeore; 0 =

3.6 Virtual receptor r

core,fsr

The virtual receptor 7, r, acquires data from the Force Sensitive Resistors. Each foot con-
tains four such receptors. Those receptors measure the resistance change due to the pressure
applied. The virtual receptor may transmit to the control subsystem the measurement of
each sensor, the total weight supported by each leg and the location of the center of pressure
of each leg.

3.6.1 Communication buffers and internal memory of the virtual receptor r . ¢,

e Internal memory "r . "

tm — termination marker

e Real receptor control }57’
cmd — command from the virtual receptor,
data _name — data name of a parameter stored in a NAOqi ALMemory module,

core,fsr*

e Input from the real receptor &r_ . :
value — current value of a parameter named as 7., . [data_namel; this

value is transmitted to the control subsystem in response to its query

29

e Input from the control subsystem ;7 ..

cmd — command from the control subsystem; cmd € {GETY,
arg — arguments from the control subsystem:;
arg = [data_name|, where:
data _name — is a string that contains a name of a parameter stored in a

NAOqi ALMemory module. It is used to query the value of
the NAOqi parameter stored in the AlMemory module

e Output produced by the virtual receptor for the control subsystem {7 .. s
value — current value of a NAOqi parameter, named as data name,
received from the AlMemory module.

. . .
3.6.2 Behaviour [B . iq. Of the virtual receptor 7. s,
e Transition function:

r Ay i+1 _
fcore,fsr,idle - yrcore,fsr -

e Terminal condition:
o

i Zore,fsr,idle = :gréore,fsr [Cmd] = GET

When above mentioned command is obtained from the control subsystem the virtual

receptor stops being idle and immediately commences with the commanded send be-

haviour.

. T b4
3.6.3 Behaviour B, 4 Of the virtual receptor r . ¢,

e Transition function:

rcf A 35 Z—ci)_rle,fsr == for _'new<1§rfzore,fsr [Value]>
core,fsr,get — . .)
) ci+1 _ R i R
yrcore,fsr [value] - xrcore,fsr [Value] for new(:Ercore,fsr [Value]>

where new is a predicate being TRUE when a new value of its argument is obtained.

A

R
f core,fsr,get

];rf:?)rr{e,fsr [Cmd] == GET_DATA
};Ti—ol—rle’fsr [d&ta_name] = gréoreisr [arg[data_name]] for 7 = to

R,.1+1 _ . .
yrcore,fsr - for 7& o

FALSE for i =1

rr e T for i # g A ﬁnew(ﬁriore,fsr [Value]>

core,fsr,get core,fsr
ey R,.i
TRUE for i # ig A new(2T corefor [Value]>

The transition function returns to the control subsystem ;r .., the current value of

c.i+1
the parameter ;rel . [value] named as data_name.

30

e Terminal condition:

! z:—ore,fsr,get = Triore,fsr [tm} = TRUE
The termination marker "7 ., g [tm] is switched when the value of the desired param-
eter is obtained from the real receptor R, . The value TRUE of the termination
marker causes the termination of the behaviour in the next control step.

3.6.4 FSM governing the virtual receptor r

core,fsr

The two state automaton (FSM) governing the activities of the Force Sensitive Resistors
virtual receptor r is presented in fig. 10.

e q_Bcore,fsr,idle

o= GET

T
@ +Bcore,fsr,get

Figure 10: FSM governing the activities of the Force Sensitive Resistors virtual receptor

S
T of the core agent acore; 0 = 517 o o [cmd]

core,fsr

core,fsr

3.7 Virtual receptor r

core,cam

The virtual receptor 7 . cam 1S responsible for acquiring data obtained by the camera.

3.7.1 Communication buffers and internal memory of the virtual receptor r

core,cam

e Internal memory "r

Core,cam:
tm — termination marker,
name id — subscriber identifier

e Real receptor control Zr

core,cam"*

cmd — command from the virtual receptor,
data name - data name of a parameter stored in a NAOqi ALMemory module,
value — a new value of camera parameter,
params — camera parameters transmitted to the real receptor,
params = [res, cid, pf, cs|, where:

res — resolution,

cid - camera id,

pf — picture format,

cs — color space,

fr — frame rate,

e Input from the real receptor Zr

core,cam*

value — current value of a parameter named as ;7. [data_name]; this
value is transmitted to the control subsystem in response to its query

image — image collected by the camera,

name_id — subscriber identifier,

31

e Input from the control subsystem {7 . cam:

cmd — command from the control subsystem;
cmd € {GET,IMAGE, SET PARAMETERS},
arg — arguments from the control subsystem;
arg = [params, data_name, value|, where:
params — camera parameters;
params = [res, cid]|, where:
res — resolution,
cid - camera id,
data _name — is a string that contains a name of a parameter stored

in a NAOqi ALMemory module. It is used to query the
value of the NAOqi parameter stored in the AIMemory
module, possible parameters: resolution, picture format,
color space, frame rate,

value — a new value of camera parameter,

e Output produced by the virtual receptor for the control subsystem ;7 ..c cam:

value — current value of a NAOqi parameter, named as data_name,
received from the AlMemory module.
image — file containing an image,

of the virtual receptor r

core,cam

3.7.2 Behaviour /B

core,cam,idle

e Transition function:

r A i+1
fcore,cam,idle - yrcore,cam -
e Terminal condition:
LT A .
core,cam,idle (1’ core, Cam[d] GET) (x T core ,cam [Cmd] - IMAGE)\/

Cp
Cpt md] = SET_PARAMETERS)

(w core, cam[

When any of the above mentioned commands is obtained from the control subsystem
the virtual receptor stops being idle and immediately transits to an adequate state.

3.7.3 Behaviour /B of the virtual receptor r

core,cam,image core,cam

e Transition functions:

7zRfcore ,cam,image é
([Hridk camlemd] — SUBSCRIBE \
R,)
y C—A_Tle Cam[params[res]] - xrcore,cam[arg[params[res]“
Brit) mlparams(eid)] = ori, o forgparamsfeid]]] { or g — i
Bt e camParams[cs]] = kBGRColorSpace
}; ’Cﬁrle cam|params[fr]] = maxCameraFPS
.)
Bt e camlcmd] — GET IMAGE for i # igA
Zri—(i)—rle,cam [name_ld] = Trzore,cam [name_ld] new <];Tf:ore,cam [name_ld]>
Bpitl lemd] = UNSUBSCRIBE for i # igA

y' core,cam

new (Ryt [image])

X core,cam

32

where new is a predicate being TRUE when a new value of its argument is obtained.

A

rr
fcore,cam,image -
(FALSE for i = i
il ftm] = for i # ig A —mew(ﬁriore,cam [image])
TRUE for i # ig A new(Tt ore,cam [Hnage])

il amname_id] = name_id] for new(Rri [name_id])

X core,cam & core,cam

cpit1 _ R,.i :
A yrcorepam - for ﬂnew(xrcore,cam [lmage]>

T Cf . =
core,cam,image . .

cpit1 : R, .i R, .i :

yrcore,cam [lmage] lmg (X COI‘G cam [lmage]> fOY neW < J:Tcore,carn [lmage]>

These transition functions transfer to the real receptor R, .., the three types of
commands: SUBSCRIBE, GET IMAGE and UNSUBSCRIBE and supplement them
with such parameters as: camera parameters and name _id identifying the subscriber.
After subscription to the camera, the real receptor R, .., returns the name id.
The real receptor takes a photo in a format acceptable by OpenCV, but the control
subsystem c_ . requires the format used by ROS. When the new data appears in
the buffer fr? limage| the virtual receptor converts this data using img function,

x core cam

sends it to the control subsystem and, moreover, sends to the real receptor R
the UNSUBSCRIBE command.

core,cam

e Terminal condition:

T A fn] — TRUE

core,cam,image core,cam

The termination marker "7/[tm] is switched when a new value appears in the
R,

T eore.camiage] buffer. The value TRUE of the termination marker causes the termi-

nation of the behaviour in the next control step.

3.7.4 Behaviour (B of the virtual receptor r

core,cam,set params core,cam

e Transition function:

(f; T camlcmd] = SET PARAMETERS
TRf 7y y é—grle Cam[data—name] = :grz:zore,cam[arg[data_name“
coreamsel_params y" é—J)_rle cam [Value] = gréore,cam[arg[value“
Byit] mlparamsfcid] = 7l . [arg[params|cid]]

\

This transition function transfers to the real receptor R, .., the parameters ob-

tained from the control subsystem. The parameter data name for a given camera
ert |arg[params|cid]|| is changed to the provided value. It should be noted that all

X core,cam

the activities performed by the NAOqi setParameter and other functions are executed

within the real receptor R cam-

33

e Terminal condition:

TFT £ TRUE

core,ls,set params

This is a one step behaviour, so the terminal condition is TRUE.

. r s
3.7.5 Behaviour [B . cam g Of the virtual receptor r .. .am

e Transition function:

r cf A gréj)_rle,cam == fOI' —new < I;Téore,cam [V&hl@])
core,cam,get, = . . .
cpi+1 _ R i R,.i
yrcore,cam [Value] - xrcore,cam [Value] fOI‘ neW(xrcore,cam [V&hl@})

where new is a predicate being TRUE when a new value of its argument is obtained.

R A
fcore,cam,get -
it camlcmd] — GET_ DATA
' ' forv =1
R, i+1 _ ed 0
yrcore,cam [data—name] - J:Tcore,fsr [arg [data_name“
T e cam = — for i # i

Yy core,cam

FALSE for i =1y
— for i # ig A —mew (Ryi [Value])

T A r i+l _
fcore,cam,get - Tcore,cam[tm] - v corecam
. . R Y
TRUE for i # ig A new(2T core.cam [Value]>
The transition function returns to the control subsystem [r ;.. .o the current value of
cp.t+1
the parameter ref. ..n[value] named as data_name.

e Terminal condition:

fT Lyl [tm] = TRUE

core,cam,get core,cam

The termination marker "l,[tm] is switched when the value of the desired param-

eter is obtained from the real receptor R, The value TRUE of the termination

core,cam”
marker causes the termination of the behaviour in the next control step.

3.7.6 FSM governing the virtual receptor r

core,cam

The four state automaton (FSM) governing the activities of the camera virtual receptor
r is presented in fig. 11.

core,cam

3.8 Control subsystem c .,

The control subsystem ¢, . is responsible for communication with its virtual effectors and
virtual receptors as well as other agents such as the repository agent or the cloud agent.
It downloads and initiates the dynamic agent. Moreover, it provides to the dynamic agent
the interface to the robot effectors and receptors at the ontological level adequate to the
necessities of the executed task.

34

T
+Bcore,cam,get

Figure 11: FSM gover

c it

A
agent Qeore; 0 = L€

& ~core,cam

r
+Bcore,cam,set_params

o = SET_PARAMETERS

core,cam,idle core,cam,lmage
9)))

o = IMAGE

ning the activities of the camera virtual receptor 7., .oy, Of the core
[emd]

3.8.1 Communication buffers and internal memory of the control subsystem

C

core,cs

e Internal memory “c

tm
threshold
app_ name

app

language
dictionary

recog word
recog sentence
rd

package

da_ status

e Output commun

e Output commun

e Input communic
virtual effector e

e Input communication buffer Sc

virtual effector e

core,cs:
— termination marker,

— threshold required for short command interpretation,
— application name to be downloaded from RAPP Store,
— list of pairs,

app = [(word, app _name), ...], where:
word — keyword for the application name applica-
tion,
app_name — name of the application to be downloaded,

— language of the sound synthesis,

— a vector of words that are to be recognized in the virtual receptor
Tcoremic 1 he recognized word will be used to download a desired
dynamic agent (application),

— recognized word in the virtual receptor 7 .. mics

— the recognized sentence from the RAPP Platform,

— contains the path to the recorded file,

— downloaded Dynamic Agent package from RAPP Platform,

— dynamic agent status,

ication buffer ;¢ controlling the virtual effector e

core,cs,ls core,ls*

°c = ‘e
ycore,cs,Is T x“~core,ls

ication buffer ;¢ controlling the virtual effector e

core,cs,body core,body:

C (&

e _c
y~core,cs,body ~ z“~core,body

ation buffer Sc obtaining proprioceptive information from the

core,cs,ls

core,ls*

€ c

C

x“core,cs,ls T ye

core,ls

core.cs body ODtaININg proprioceptive information from the

core,body:

e

_c
xccore,cs,body - yecore,body

35

Output communication buffer /¢ controlling the virtual receptor r

core,cs,mic core,mic"

"o — Cp
y ~core,cs,mic ~— ' core,mic

Lo , . .
Output communication buffer jc., . . inertial COntrolling the virtual receptor r

core,inertial*

7 Cc

C

y~core,cs,inertial 27

core,inertial

Output communication buffer ;... s touen cONtrolling the virtual receptor 7., . ¢ ouen:
;Ccore,cs,touch = :ircore,touch
Output communication buffer ;c.... .t controlling the virtual receptor 7 .. g
;Ccore,cs,fsr = ;Tcore,fsr
Output communication buffer ;.o s cam CORtrolling the virtual receptor r . cam:
;CCOI'Q,CS,C&H] = IL‘CTCOFG,Cam

Input communication buffer Jc obtaining aggregated information from the vir-

tual receptor r

core,cs,mic

core,mic"
r c
C cmie — o :
x ~core,cs,mic y' core,mic

T

Input communication buffer

virtual receptor r

Ceorecstouch ODtaINING aggregated information from the

core,touch*

T

C

— C,r
x“core,cs,touch — y

core,touch

o , . . .
Input communication buffer 7¢ .. . inertial OPtaining aggregated information from the
virtual receptor r

core,inertial*

s C

C

x ~core,cs,inertial — y,r

core,inertial

Input communication buffer ¢ obtaining aggregated information from the vir-

tual receptor r

core,cs,fsr

core,fsr*
r _c

C

x“core,cs,fsr T y,r

core,fsr

Input communication buffer Jc obtaining aggregated information from the vir-

tual receptor r

core,cs,cam

core,cam”
r c
c =rr
x “core,cs,cam y' core,cam

- T .
Input from the dynamic agent agent ¢ e s da’

36

da_ status
cmd

path
pose

status of dynamic agent,
command from dynamic agent Zc
cmd € {Terminate, Call}

to control subsystem c

core,cs

a motion trajectory for the moveAlongPath behaviour,
current robot global pose with respect to world coordinate frame,
pose = [position, orientation|, where:

robot position,

position = [x,y, z], where:

position

orientation

X

y
Z

x coordinate of a current position,
y coordinate of a current position,
z coordinate of a current position,

current robot orientation in a quaternion
form,

X

37

x component of a current robot ori-
entation represented in a quaternion
form,
y component of a current robot ori-
entation represented in a quaternion
form,,
z component of a current robot ori-
entation represented in a quaternion
form.,,
w component of a current robot ori-
entation represented in a quaternion
form,,

core,cs?

arg ey — arguments for a loudspeaker from a dynamic agent;
arg e = [cmd, arg|, where:

cmd - command for e .,
cmd € {PLAY AUDIO,PLAY AUDIO,STOP SOUND},
arg — arguments for a virtual effector e, 1,

arg = [text, fp, params, playLoop,
begin position], where:

text — the text to be transformed into
the synthesized sound,
fp — the path to the file that will be
reproduced,
params — loudspeaker virtual effector pa-
rameters,
params = [dvt,dl dv,spr],
where:
dvt — desired voice type,
dl - desired language,
dv - volume requested from
the range 0.0 - 1.0,
spr — stereo panorama requested
(-1.0 : left, 1.0 : right,
0.0 : center),
playLoop — plays a file in a loop if the flag
is set
to TRUE, otherwise plays once,
begin position — position in second where the
playing

should begin,

38

arg _ €pody

arguments for a body effector from a dynamic agent,
arg_ epody = |cmd, arg|, where:
command for body effector received from

cmd

arg

dynamic agent,

cmd € {MOVE_TO,MOVE_VEL MOVE_ HEAD,
TAKE PREDEFINED POSTURE,MOVE_ STOP,
MOVE_ JOINT,LOOK AT POINT},

arguments from the control subsystem;

arg = [velocity, dpose, posture, dja, look _at, move head],

where:
velocity

dpose

posture

dja

look at

move head

39

velocity of motion with respect to the
robot coordinate frame (memorized
argument of the MOVE command);
velocity = [vy, vy, w], where:

vy, — velocity along the X-axis, in me-
ters per second,

vy — velocity along the Y-axis, in me-
ters per second,

w — velocity around the Z-axis, in

radians per second,
desired position with respect to the
robot coordinate frame (memorized
argument of the MOVE command);
dpose = [x,y, 0], where:

X distance along the X-axis, in
meters,

y — distance along the Y-axis, in
meters,

@ — rotation around the Z-axis, in
radians,

name of a predefined posture to be
attained,
desired joint angles with parameters,
dja = [joints, values|, where:

joints — a name or names of joints,

values — one or more angles in radians,
during the interpolation of an-

gles,
point at which the head of the
robot should be directed, in a
FRAME WORLD coordinates,
look at = [x,y, 2], where:

x — x coordinate of a desired point,
y — vy coordinate of a desired point,
z — z coordinate of a desired point,

two desired angles needed to rotate
the robot head,
move head = [yaw, pitch|, where:

yaw — head end position in yaw angles,
pitch — head end position in pitch angles,

arg Ty — arguments for a microphone from a dynamic agent,
arg TImic = [cmd, arg|, where:

cmd - command for a microphone receptor,
cmd € {CAPTURE AUDIO, WORD SPOTTING},
arg — arguments from control subsystem,
arg = [dct,dict_size, fp, time, enrg, st|,
where:
dct — contains the list of words that should be
recognized,
dict _size — dictionary size,
fp — file containing the recorded signal samples,
time — commanded duration of the recording,
enrg — threshold of signal energy for microphones,
st — time during which the microphone signal

energy is compared with the threshold.
When during this time the signal will be
lower than the threshold then the record-
ing stops,

arg Team — arguments for a camera from a dynamic agent,
arg Team = |cmd, arg], where:
cmd — command for a camera receptor,
cmd € {CAPTURE IMAGE,SET CAMERA PARAMS},
arg — arguments from the control subsystem;
arg = [params, data_name, value|, where:
params — camera parameters;
params = [res, cid|, where:
res — resolution,
cid - camera id,
data name — isa string that contains a name of a param-
eter stored in a NAOqi ALMemory module.
It is used to query the value of the NAOqi
parameter stored in the AlMemory mod-
ule, possible parameters: resolution, pic-
ture format, color space, frame rate,
value — a new value of camera parameter,
e Input from the RAPP Platform agent Zc¢

core,cs,rp*

recog sentence — the recognized sentence from the RAPP Platform,
downloaded — a boolean information if the package was downloaded correctly from

RAPP Store. If a value is False then probably a package doesn’t exist
in the RAPP Store or a package was downloaded incorrectly,

e Output to the dynamic agent Lc

core,cs,da*

40

is_finished — TRUE if a current behaviour was finished,

ca_ status — core agent status,
captured image — captured image from desired camera,
path to audio — path to the recorded audio file,
recognized word — recognized word,
pose — current robot global pose with respect to world coordinate frame,

pose = [position, orientation|, where:

position — robot position,
position = [x,y, z], where:

X — X coordinate of a current position,

y — 7y coordinate of a current position,

z — 1z coordinate of a current position,

orientation — current robot orientation in a quaternion
form,

X — X component of a current robot ori-
entation represented in a quaternion
form,

y — y component of a current robot ori-
entation represented in a quaternion
form,,

z — 1z component of a current robot ori-
entation represented in a quaternion
form,,

w — w component of a current robot ori-
entation represented in a quaternion
form,,

e Output to the RAPP Platform agent ¢ .. csp:

package a dynamic package to be downloaded from RAPP Store,
path to audio path to the recorded audio file,
rd contains raw data from the microphones,

. (&
3.8.2 Behaviour {B_,. . of the control subsystem c,,

e Transition function:

c f AL
core,cs,init —

Agent creation and its initialization are external to the agent and as such are not
represented within this model. It is assumed that from the point of a particular agent
its creation is caused by an external entity and the process itself is not governed by
a particular transition function. The implementation of this process brings about the
creation of a hop service, ros services and rosbridge. The parameters stored in the
configure files are loaded into the internal memory, e.g. dictionary ‘c_,, .[dictionary],
the threshold °c.,, .[threshold] and the path °c. [rd] where recorded file will be
placed. For that purpose the function getFromConfigureFile() is used. All this is
represented by a behaviour having an empty transition function as an argument. It
is represented in the graph of the FSM governing the actions of the agent just for the
sake of completeness, from the point of view of its implementation.

e Terminal condition:

41

ofT £ TRUE

core,cs,init

This is a one step behaviour, so the terminal condition is TRUE.

3.8.3 Behaviour /B of the control subsystem c

core,cs,register core,cs

e Transition function:

c f L
core,cs,register —

This is a behaviour registering with the RAPP platform — currently not used.

e Terminal condition:

efT £ TRUE

core,cs,register

This is a one step behaviour, so the terminal condition is TRUE.

3.8.4 Behaviour {B of the control subsystem c

core,cs,listen core,cs

e Transition function:

cr f A
core,cs,listen ~

((e [cmd] = RECOGNIZE

y ~core,cs,mic

reitl larg[dictionary]] = ¢ .. .[dictionary] for i = g

y “core,cs,mic core,cs
reitl [arg[threshold]] = threshold]
P Cotemic = — for i # i

(PX) [
Yy ~“core,cs,mic Ccore,cs
y ~core,mic

c,c A
fcore,cs,listen -
(FALSE for i =1g
¢ itl) - for i # ig A —|new< rc! |rw)
Cearo.cs [tm] — x core,cs,mlc[]
TRUE for i # ig A new (T e comic [rw])
ca+1 Tl ; ; T
L Ceore,cs [recog_word] = 2Ccore,cs,mic [I‘W] for i 7£ (AA neW(:rCcore,cs,mic [I‘W])

It sets the dictionary and commands the microphones to listen to the user.

e Terminal condition:

cpT A c i _
core,cs,listen Ccore,cs [tm] = TRUE
The termination marker ¢c tm| is switched when the new value of a recognized
core,cs

word is obtained from the virtual receptor r ., ni.- The value TRUE of the termination
marker causes the termination of the behaviour in the next control step.

42

. c
3.8.5 Behaviour +Bcoreycs7interpretmng of the control subsystem c_,, .

e Transition function:

T i+l — ¢l =X
oTp a Yo mlrd] = “Clores[rd] for i =i
core,cs,interprety,on, jy—’c,é—(i)_rle csap = — for ¢ # 10

c,Cf AN
core,cs,interprety o,

(FALSE for i =g

ceitl tm] =4 ~ for i # ig A —|new< L orecs.p [recog_word})

TRUE for i # ig A new< L orecs.ep [recog_word])

ci+1 —
Coare,cs [F€COZ_sentence] =

T]
:cccore,cs,rp [recog_sentence] for i 7& ZO A neW(xccore cs,Ip [recog_sentence]>

ci+1 —
Ccore,cs [app_name] -

getAppName(FChore.cs.rp [recog_sentence]) for i # g/

o
new < Cloro.cs.rp [recog_sentence])

Sends to the RAPP Platform the recorded raw data to recognize a user command and
interprets the recognized word. Function getAppName returns the application name

“Chorecs[aPP[app_name]] based on a recognized word °cf,,, .|[recog_word].

e Terminal condition:

°fr £ect o Jtm] = TRUE

core,cs,interpretLong core,cs

The termination marker °c’_ . . [tm] is switched when the new value of a recognized

word is obtained from the RAPP Platform. The value TRUE of the termination marker
causes the termination of the behaviour in the next control step.

: (&
3.8.6 Behaviour Jrl’)’core7cs7imerpretsmrt of the control subsystem ¢,

e Transition function:

&e A c i+l .
fcore,cs,interpretshort - Ccore,cs[app_name] -

getAppName(Cci;g]}e@S [recog_word]) for ¢citl, . [recog_word] # AbortA
“ciin eslrecog _word] # EmptyA

‘et slrecog _word] # Long

Error for otherwise

Interprets the short command. Function getAppName returns the application name

¢ lapplapp_name]| based on a recognized word °ci,, .[recog_word].

Ccore cs
e Terminal condition:

crT A
core,cs,interpretg, o« TRUE

This is a one step behaviour, so the terminal condition is TRUE.

43

. c
3.8.7 Behaviour (B, . inorm Of the control subsystem c,,. .

e Transition function:

e Transition function:

cef A
core,cs,inform

ecitl . [emd] = SAY

Yy ~core,cs,ls

e i+1 . » : 9
v Coorecsislargltext]] = "Command_was_not_recognized

e i+1 _ . .
Yy core,cs,ls T for 7& o

for ¢ = io

c,c f AL
core,cs,inform —

FALSE for i = 4

ceitl tm] =4 ~ for i # iy A ~new (SChorecsils [reply])

TRUE for i # ig A new (SC orecsils [reply])

Behaviour calls a service from the virtual effector to inform that the command was not
recognized.

e Terminal condition:

crr A ci _
core,cs,inform — Ccore,cs [tm] - TRUE

The termination marker °c,. . [tm] is switched when the sound was synthesized. The
value TRUE of the termination marker causes the termination of the behaviour in the

next control step.

. c
3.8.8 Behaviour B, 1. Of the control subsystem c.,.

e Transition function:

i+1
Y c—ci)_re cs [paCkage] ‘ -
[app_name] for i = i

C,T A c .1
fcore,cs,load - chorei,cs,rp
i+ _ ; ;
yCcore,Cs,rp - for 4 7é 20

c,c f AN
core,cs,load

(FALSE for i =1
- for i # ig A —|new< c [downloaded])

ccz—c’)—rle,cs [tm] — x“core,cs,rp

TRUE for i # ig A new< L orecs.ep [downloaded])

“citl s[package] = downloadDAPackage() for & 7 io / neW(Ceorecsp [downloaded])
AT [downloaded] = TRUE

. x ~core,cs,rp

The recognized application name is sent as a request of downloading a package of
dynamic agent. Behaviour downloads also a dynamic agent package from the RAPP
Platform.

44

e Terminal condition:

‘ 7c-ore,cs,load = °c! [tm] = TRUE

core,cs

The termination marker °cl,,, [tm] is switched when the information is received if the
package was downloaded correctly from the RAPP Store. The value TRUE of the
termination marker causes the termination of the behaviour in the next control step.

3.8.9 Behaviour B, activate Of the control subsystem c

core,cs

e Transition function:

Cfcore,cs,activate é activateDA(cciH [paCkage])

core,cs

C7Cfcore,Cs,activate é
(FALSE for i =i
citl tm) = T for i # ig A ﬂnew<chrl‘avc&da[da_status])
TRUE for i # ig A new<Zciirle’cs’da[da_statuso
iy olda_status] = Tclft o [da_status] for i # ig/A
new < Eciﬁrle,c& da [da_status])
\ Teith cs.aalda_status] = Working

Activates the dynamic agent process.

e Terminal condition:

crr A cu —
core,cs,activate — Ccore,cs [tm] - TRUE

The termination marker °cl,, .[tm] is switched when the information is received from
the dynamic agent that it was activated and is ready to send commands. The value

TRUE of the termination marker causes the termination of the behaviour in the next
control step.

3.8.10 Behaviour (B, . wait «ma Of the control subsystem c

core,cs

e Transition function:

c,ef A
core,cs,wait_cmd —

(c,ef A
core,cs,wait__body

Sl = T cf_ewlend] |

g = T farg epplarg]) (7P Frcanfarg oo md])
O corecs wait_1s =

el femd] = T qllarg_efemd]]

it g = Te o farg_carg]) (7P Fonafarg _culomd])

45

cr f A
core,cs,wait _cmd —

(“rf core,cs,wait mic £
;ci—grle,cs,mic[cmd] = Eciore,cs,da[arg_rmic[Cmd“ -
Pt org) = T farg_slarg] (1 P (Folrocsanlong_rmisfem])
orf core,cs,wait cam =
Pt cumlomd] = Tl arg g [emd]]
g = Te o farg temfarg] [Feborecsnlarg_toamfemd]])

c,Cf AN
core,cs,waiteymg
(

(FALSE for i = i
- for 4 ?é iO A —new (7ae_lczore,cs,da [arg_ebOdy [Cmd]>

A—new Z;Cf:ore,cs,da [arg_ Cls [Cmd])

A—new 7:;szore,cs,dau [arg_ Tcam [Cmd“)

A—new Eczore,cs,da [arg_ I'mic [Cmd]] >

cCi-i-l [tm] — Agciore,cs,da[cmd] 7é Terminate

core,cs

TRUE for i # ig A new (new < L€ orecs.da AT _ €hody [Cmd]>

Vnew 7arjciore,cs,da [arg_els [Cmd]

VIEW ((L6hy 01278 Team[omel])

Vnew 7a;ciore,cs,da [arg_rmic [Cmd]])

T i _ ~
V o Coorescs.dalCd] = Termmate)

Behaviour waits for new commands and arguments from dynamic agent.

e Terminal condition:

cpT A c i _
fcore,cs,waitcmd - Ccore,cs [tm] - TRUE

The termination marker °c.,, . [tm] is switched when the new dynamic agent command
appears in the control subsystem. The value TRUE of the termination marker causes
the termination of the behaviour in the next control step.

3.8.11 Behaviour {B,. . ecxecute Of the control subsystem c

core,cs

Behaviour (B, e execute TePresents many behaviours called by dynamic agent. Below a list
of them is presented:

C

e Behaviour +"~ core,cs,text ToSpeech

46

Transition function:

c,e A
fcore,cs,textToSpeech -
chc—ci)_rle,cs,ls [Cmd] = SAY
;Czcj)rrle,cs,ls [arg[teXtH = 7agcf':ore,cs,da[arg_els [arg[teXtH] for 1 = io
Zcf;)rrle,cs,ls [arg [params [dl] H = gcéore,cs,da [a‘rg_els [arg [params [dl]]]]
gci—ci)_r{a,mic == for ¢ # 10

c,Cf Ay
core,cs,text ToSpeech

FALSE for i =1y
for i # ig A —mew(

zCcore ,CS, ls[

ccitl [tm] = synthesmed])

TRUE for i # ig A new(synthesized])

zCcore ,CS, ls[

TRUE for i # ig A new(ct

x ~core,cs ls[

T AT i+l . . _ synthesized])
fcore,cs,textToSpeech - yccore,cs,da[ls_ﬁnlshed] - { th
— otherwise

The command SAY and parameters are transfered to the virtual effector e, -

Terminal condition:

°fr £ <cl - o[tm] = TRUE

core,cs,text ToSpeech core,cs

The termination marker °c,. .[tm] is switched if the sound was synthesized. The
value TRUE of the termination marker causes the termination of the behaviour in the
next control step.

: c
e Behaviour +Bc0re,cs,playAudio

Transition function:

c7ef A
core,cs,playAudio —

[JCeoreicsislomd] = PLAY
 Conre.cs 15 T8 D] = LClore,csdalar8_eis[arg|p]]]
£Ce oo axg[playLoop]] = [orecsaalarg_exfarg[playLoop]]]
;;“rlecs larg[begin _position]] = Z;ciorejcsyda[arg eis[arg[begin _ position]]]
Comre,cs s arg[params|dv]]] = L Ctorecsdalarg_eis[arg[params[dv]]]]

k Comrescs1s[arg[params|[spr]]] = LClore.csda218_e1s[arg[params(spr]]]]

chcore,cs,textToSpeech = CCiJrl [next_state] = WAIT_CMD

core,cs

The command PLAY and parameters are transfered to the virtual effector e, .

Terminal condition:

cfT . £ TRUE

core,cs,playAudio

This is a one step behaviour, so the terminal condition is TRUE.

47

e Behaviour +Bc0re,cs,wordSpotting

Transition function:

C rf Ay
core,cs,wordSpotting —
r i+1 o
yccore,cs,mic [Cmd] = RECOGNIZE . ' .
r i+1 Ly _ T i or 1 = 19
yccore,cs,mic [arg [dlctlonary]] - xccore,cs,da [arg_rmic [al"g [dCt]H
r i+1 _ . .
yccore,mic - for ¢ 7é 10
C,Cf N
core,cs,wordSpotting —
(FALSE for i =iy
ci+1 _ - fOI' Z 7é ZO A\ _‘neW(W >
Ccore,cs [tm] = T core cs mlc[]

TRUE for i #ig A new(m Ceore,cs.mic [rw])

ci+1 _
Coarecs [recog word]| =

e [rw] for i # ig A new(c [rw])

\ & —core,cs,mic & —core,cs, mic

c,T AT i+l : —
fcorc,cs,wordSpotting - yccore,cs,da[recognlzed_word] -
T
zCeore,cs,mic [FW] for 4 7é ip A\ new (xccore cs,mic [rw]>
— otherwise

It recognizes the word included in the dictionary and returns it to the dynamic agent.

Terminal condition:

cpT A ci —
fcore@s,wordSpotting - Ccore7cs [tm] = TRUE
The termination marker °c., . [tm] is switched when the new value of a recognized

word is obtained from the virtual receptor 7' e mic- Lhe value TRUE of the termination
marker causes the termination of the behaviour in the next control step.

Behaviour +Bcore,cs,captureAudio
Transition function:

c Tf A
core,cs,captureAudio —

rettl o ielemd] = RECORD

Yy ~core,cs,mic
” H—l fp“ = core cs [rd]
T 2

yCeore,cs, mlc[[

r H—l [[tune]] = xccore cs,da
[
[

y core cs,mic
cmd] = REGISTER)
arg|[fp]] = “Clorecstd]
y ~core,cs,mic [t“ =

CZ

E core,cs,da [arg_ I'mic [arg [St]]]

: c
; z;rle,cs,mic [arg [enrg]] - x ~core,cs,da

Ecéore,cs,da [arg_ I'mic [arg [enrg]]]

Tt s miclaTg[params|| = [smpl_rate, channels]

for ¢ = 1y /\new(

T i

[arg rpic[arg[time]]] 2 Ceorecs.da ATE_ rmlc[arg[time]]D

r Z+1
y Core CS, mic
r l—‘rl
y core CS, mic
r i+1
c . largls o
larg forlzzo/\—'new(

T i [arg_ Tmic [arg[time]]]>

V

r i+1 o . .
yccore,cs,mic - for 7é 0

48

c,cf A
core,cs,captureAudio —

(FALSE for i = iy
C r i
e il . for i # ig A —|new< c .|rec)
Corocs [tm] — x core,cs,mlc[]
. . r z
TRUE for i # ig A nevv(gcccomcs’mic [rec])
ci+1 _
Coarecsnext_state] =
WAIT _CMD for i # iy A new (T e csmic [rec])
T AT i+l SR
fcore,cs,captureAudio - yccore,cs,da[path_to_audlo] -
cl ; ; T
Ceore,cs [I"d] for i 7& 1o A\ new < zCcore,cs,mic [rec]>
— otherwise

It records the sound. RECORD command records sound for a given time, whereas
REGISTER command is responsible for recording sound until the silence detection.

Terminal condition:

crT A cu —
core,cs,captureAudio Ccore,cs [tm] = TRUE
The termination marker ¢c’_ . ..[tm] is switched when the new recording is terminated.

The value TRUE of the termination marker causes the termination of the behaviour
in the next control step.

M C
BehaVIOur +Bcore,cs,getTransform
Returns the matrix as a transformation between two coordinates.

: c
BehaV10ur +Bcore,cs,capture1mage
Transition function:

cr f A
core,cs,capturelmage —

([§Cehecs.camlcmd] — IMAGE
yCotrecscam[arglparams[cid]]] - = T¢{ore s aalarg_ream[arg[params(cid]]]] & for i =,
b Coare,cs.cam (a1 [paramsfres|]] = Tclore cs.da 2T _Team|arg[params(res]|]]
yCeorecam =~ for i # i

c,c f A
core,cs,capturelmage —

FALSE for i = iy
for i # ig A —mew(e [image])

cCiJrl [tm} — x ~core,cs,cam

core,cs

TRUE for i # i A new(7 Chore.cs cam [image])

A TCiJrl

c, T . .
fcore,cs,capturelmage Ty core,cs,da[Captured_lmage] -

T : : . T :
mccore,cs,cam [Hnage] for # 20 A neW(acCcore,cs,cam [nnage])

— otherwise

Captures the image from the robots camera and transfers the captured image to the
dynamic agent.

49

Terminal condition:

A
< Zore ,cs,capturelmage = CCftorta,cs [tm] = TRUE

The termination marker °c;,. .[tm] is switched when the new image is received from

the virtual receptor r The value TRUE of the termination marker causes the

Core7cam
termination of the behaviour in the next control step.

: c
Behaviour +Bcore,cs,setCameraParams
Transition function:

erf A
core,cs,setCameraParams —

(;cg}e cs.cam [emd] = SET PARAMETERS
; z—grl(e cs, Cam[[Valueﬂ = 7Iﬂcéore cs,da [arg Tcam [arg [Value]]] f . .
A ori=1
37; z:—grle cs, cam[arg [dataname“ = 7Jﬁﬂczcore,cs,da [arg_rcam [arg[data_name”] ’
| e Copre cs,cam A1 [Params(eid]]] = Tclre oo dalaT8_Team|arg[params|cid]]]
Modifies camera parameters.
Terminal condition:
A
¢ z:—ore,cs,setCameraParams = TRUE
This is a one step behaviour, so the terminal condition is TRUE.
Behaviour :Bcore,cs,moveTo
Transition function:
A
¢ ef core,cs,moveTo =
([5 Ceare.cs.bodylcmd] = MOVE_TO)
1
; f;)rre cs body[arg[dpose[x]“ = €CZOre cs, da[arg ebody[rg[dpose[xm] ‘ . .
1 or 1 = iy
5 ?:—gre cs,body [arg[dpose[yn] = 7ach:ore cs,da [arg ebody[[deSG[yHH
1
Z Zc—(i)_re cs,body [arg[dpose[e]]] = 7acﬂczj:ore cs,da [arg ebody[[deSG[QHH)
;Czcj)rrle body - for ¢ 7é io
\
A
C7Cf core,cs,moveTo =
FALSE for i = iy
ccitl ftm] =4 for i # ig A _‘new(xccore es.body [pose])
TRUE for i # ig A new(xccore es body [pose])
Move to the specified position with respect to the robot coordinate frame.
Terminal condition:
a
¢ Z:—ore,cs,moveTo = Ccf:ore,cs [tm] = TRUE
The termination marker °c., . [tm] is switched if the robot reached the desired po-

sition. The value TRUE of the termination marker causes the termination of the
behaviour in the next control step.

20

e Behaviour +Bc0re,cs,moveVel
Transition function:

¢ Ef core,cs,move Vel é
(5 ::Xrle ,cs,body [] = MOVE
y6 7(l:grle ,cs,body [[VelOCItY[VXH] = 7xﬂcﬁtore,cs,da [arg_ebody [arg[VGIOCitY[VXHH
Z Z:irle ,cs,body [arg[velocmy [Vy]]] - ja;cz:ore cs,da [arg ebody[[VGIOCity [Vy]]]]
L ; zgrle ,cs,body [arg[velomty [W]H = 7:;C;L:ore cs,da [arg ebody[[VelOCity [WHH
Move with specified velocity.
Terminal condition:
A
°fr = TRUE

core,cs,move Vel

This is a one step behaviour, so the terminal condition is TRUE.

: c
e Behaviour +Bc0re,cs,moveStop

Transition function:

£ ecitl [cmd] = STOP

c,e
fcore,cs,moveStop Yy ~core,cs,body

Robot stops movement.
Terminal condition:

efT £ TRUE

core,cs,moveStop

This is a one step behaviour, so the terminal condition is TRUE.

: c
e Behaviour —i—Bcore,CS,moveJoint

Transition function:

¢ ef core,cs,moveJoint =S
[(eetecs poaylomd] = INTERPOLATION
i Coore.cs.body [Arg[djaljoints]]] = Telo, o aalarg_enoaylargldjafjoints||]] & for ; — 4
b Cenrecs pody[arg[djalvalues]]] = Tel i o aalarg_eoay[arg[djalvalues]]]]
;Czc—ci)—rle body — for i # 1o

c,Cf A
core,cs,moveJoint —

FALSE for i = iy
el [tm] — for ¢ £ ig A —|new< ct [attained])

c x ~core,cs,body
core,cs

TRUE for i # ig A new(c [attained])

x ~core,cs,body

Move Nao joint to specified angle.

Terminal condition:

crr L Bcgt [tm] = TRUE

core,cs,moveJoint core,cs

o1

The termination marker °c.,, [tm] is switched if the robot reached the desired angle

position. The value TRUE of the termination marker causes the termination of the
behaviour in the next control step.

: c
e Behaviour +Bcore,cs,takePredeﬁnedPosture

Transition function:

c,ef A
core,cs,takePredefinedPosture

e i+1 _

5 Coote.cs body [emd] = POSTURE o

e i+l . _ T, or 7 =19

y “core,cs,body [arg [pOStUI'GH - xccore7cs,da [arg_ebOdy [arg [posture] H

e i+l _ . .
yccore,body - for ¢ 7é 10
C,Cf AN
core,cs,takePredefinedPosture
FALSE for i =1y
cci-i-l [tm} — - for i # iO A ﬁnew(aescf:ore,cs,body [attained])
core,cs
. . e /L .
TRUE for i # iy A new(ﬁccoreﬁs’body [attamed])
Move to a predefined posture.
Terminal condition:
crr A ci —
core,cs,takePredefinedPosture — Ccore,cs [tm] = TRUE

The termination marker °c!_ . .[tm] is switched if the robot reached the desired posture.

The value TRUE of the termination marker causes the termination of the behaviour
in the next control step.

b Behaviour —EBcore,cs,rest
Moves to a predefined safety posture and removes the joints stiffness.

: Cc
e Behaviour +Bc0re,cs,moveAlongPath
Robot moves along specified path.

: C
e Behaviour +Bcore,cs,setGlobalPose
Sets a current robot position in a world frame.

e Behaviour ‘EBCOI‘G,CSJOOkAtPOth
Robot looks at the point specified in world frame.

: (&
e Behaviour +Bcore,cs,getRObotPose
Returns the current robot position.

3.8.12 Behaviour /B of the control subsystem c

core,cs,destroy core,cs

e Transition function:

£ destroyDA()

°f
core,cs,destroy

Kills all dynamic agent processes.

52

e Terminal condition:
crT A
core,cs,destroy TRUE

This is a one step behaviour, so the terminal condition is TRUE.

3.8.13 Behaviour /B of the control subsystem c

core,cs,unregister core,cs

e Transition function:

c A :
fcore,cs,unregister - unrengter()

Unregisters robot from the repository agent.

e Terminal condition:

ofT .2 TRUE

core,cs,unregister

This is a one step behaviour, so the terminal condition is TRUE.

3.8.14 Behaviour (B, . ane Of the control subsystem c_,. .

e Transition function:

c f L
core,cs,finish —

Kills all core agent processes. The destruction of the agent itself is beyond the agent
model — it has to be caused by an outside source and does not require any internal
behaviour, thus such a behaviour is represented by an empty transition function. It

is represented in the graph of the FSM governing the actions of the agent just for the
sake of completeness, from the point of view of its implementation.

e Terminal condition:

efT . 2 TRUE

core,cs,finish

This is a one step behaviour, so the terminal condition is TRUE.

3.8.15 Behaviour /B of the control subsystem c

core,cs,recordemd core,cs

e Transition function:

lI>

cr f
core,cs,recordemqd

((T Z+1
Yy COI'O CS, mic

[

r H—l
y core cs, mlc[
[
[

cmd] — REGISTER)
arg[file path]] = “Clorecs1d]
arglenergy]] = ENERGY

v Ceore.csmic arg[silence_time]] = SILENCE_TIME

\
r i+1 _ . .
yccore,mic - for ¢ 7£ o

r it for 1 = ig
Yy Core CS, mic

r Z+1

93

c,Cf A
core,cs,recordemg

FALSE for i = iy

. _ ; q T
cpitl [tm] — for 4 7& (XA zCcore,cs,mic

’ TRUE for i # ig A ¢!

core,cs,mic [I'GC]

[rec] # TRUE
= TRUE

Behaviour calls a service from virtual receptor of recording until a silence detected.

e Terminal condition:

ceT A c i —
core,cs,recordemg Ccore,cs [tm] - TR‘UE
- . c Z . . .
The termination marker “c;,,, [tm] is switched when the virtual receptor r .. ;. de-

tects the silence. The value TRUE of the termination marker causes the termination
of the behaviour in the next control step.

3.8.16 FSM governing the control subsystem c

core,cs

The fourteen state automaton (FSM) governing the activities of the body virtual effector

€corebody 18 Presented in fig. 12.

c L.
e +Bc01'e,cs,1n1t

c
e +Bcore,csﬁregister

c B .
c +~core,cs,inform
+Bcorc,cs7listcn

o = EMPTY

»(513)
oc=LONG \O_J

+ Bcore,cs,record —cmd

¢B .
+™core,cs,interpret_short

o = ABORT n# EMPTY

c . c
+Bcore,cs¢unreglster +Bcoreﬁcs,load

c c
+ Bcore,cs ,destroy + Bcore,cs,activate

R .
+™core,cs,finish

¢ = TERMINATED

-ore Of the core agent aoe;

[recog_sentence}7 g é gciore,cs,da [Cmd]

Figure 12: FSM governing the activities of the control subsystem c
A ro tw], n 2 Tci

0= chore,cs,mic y 1= xccore,cs,rp

54

3.8.17 Behaviours corresponding to the RAPP API functions

Below there are presented behaviours with the corresponding Rapp API functions:

e Behaviour B corresponds to the playAudio function,

core,cs,playAudio

. c .
e Behaviour B, s textTospeecn COTTEsponds to the textToSpeech function,

Behaviour

Behaviour

B corresponds to the wordSpotting function,

core,cs,wordSpotting

B corresponds to the captureAudio function and to the

core,cs,captureAudio

captureAudio (with silence recognition) function,

Behaviour
Behaviour
Behaviour
Behaviour
Behaviour
Behaviour

Behaviour
tion,

Behaviour
Behaviour
Behaviour
Behaviour
Behaviour
Behaviour

Behaviour

c . :
B ore cs voiceRecora €OTTESPONAS to the voiceRecord function,

B corresponds to the moveTo function,

core,cs,moveTo

B ore csmovevel COITESpONds to the moveVel function,

B ore.cs getRobotPosition COTTESPOnds to the getRobotPosition function,

c .
B ore.cs movestop COTTESPONds to the moveStop function,

B ore.csmovetoint COITEsponds to the moveJoint function,

B corresponds to the takePredefinedPosture func-

core,cs,takePredefinedPosture

c .
B orecs rest COTTEsponds to the rest function,

c .
B ore.csmoveAlongPath COTTESponds to the moveAlongPath function,

B corresponds to the globall.ocalization function,

core,cs,globalLocalization

B e cs lookAtPoint COTTESponds to the lookAtPoint function,

B corresponds to the capturelmage function,

core,cs,capturelmage

B corresponds to the setCameraParams function,

core,cs,setCameraParams

B core.cs getTransform COITEsponds to the getTransform function.

References

[1] C. Zielinski, T. Kornuta, and M. Boryn, “Specification of robotic systems on an example
of visual servoing,” in 10th International IFAC Symposium on Robot Control (SYROCO),
vol. 10, 2012, pp. 45-50.

2]

13l

T. Kornuta and C. Zieliniski, “Robot control system design exemplified by multi-camera
visual servoing,” Journal of Intelligent & Robotic Systems, vol. 77, no. 3-4, pp. 499-524,
2015.

C. Zielinski and T. Winiarski, “General specification of multi-robot control system struc-
tures,” Bulletin of the Polish Academy of Sciences — Technical Sciences, vol. 58, no. 1,
pp. 1528, 2010.

95

4]

5]

[6]

C. Zielinski, T. Kornuta, and T. Winiarski, “A systematic method of designing control
systems for service and field robots,” in 19-th IEEE International Conference on Methods
and Models in Automation and Robotics, MMAR’2014. 1EEE, pp. 1-14.

P. Trojanek, T. Kornuta, and C. Zielifiski, “Design of asynchronously stimulated robot
behaviours,” in Robot Motion and Control (RoMoCo), 9th Workshop on, K. Koztowski,
Ed., 2013, pp. 129-134.

C. Zielinski, W. Kasprzak, T. Kornuta, W. Szynkiewicz, P. Trojanek, M. Walecki,
T. Winiarski, and T. Zielifiska, “Control and programming of a multi-robot-based re-
configurable fixture,” Industrial Robot: An International Journal, vol. 40, no. 4, pp.
329-336, 2013.

o6

