
Annex I: Speci�cation of the RAPP Core Agent

Warsaw University of Technology, Institute of Control and Computation
Engineering, Warsaw, Poland

1 Introduction

The proposed design method requires from the designer the speci�cation of a speci�c model
of a robot system executing the task that it is meant for. This model is produced on the
basis of a universal model of a robotic system described below. In this approach robots
in single- or multi-robot systems are represented as embodied agents. As embodied agents
are the most general forms of agents, out of them any robot system can be designed. The
thus produced speci�cation is used as a blueprint for the implementation of the system.
The described methodology of creating robot systems has been described in many papers,
e.g. [1�6].

2 An embodied agent

A robotic system is represented as a set of agents aj, j = 1, . . . , na, where na is the number of
agents (j designates a particular agent). Embodied agents have physical bodies interacting
with the environment. This work focuses on embodied agents [2], but all other agents can
be treated as special cases with no body, thus the presentation is general.

2.1 General inner structure of an embodied agent

An embodied agent aj, or simply an agent, possesses real e�ectors Ej, which exert in�uence
over the environment, real receptors Rj (exteroceptors), which gather information from the
surroundings, and a control system Cj that governs the actions of the agent in such a way
that its task will be executed. The exteroceptors of the agent aj are numbered (or named),
hence Rj,l, l = 1, . . . , nR, and so are its e�ectors Ej,h, h = 1, . . . , nE. Both the receptor
readings and the e�ector commands undergo transformations into a form that is convenient
from the point of view of the task, hence the virtual receptors rj and virtual e�ectors ej
transform raw sensor readings and motor commands into abstract concepts required by the
control subsystem to match the task formulation. Thus the control system Cj is decomposed
into: virtual e�ectors ej,n, n = 1, . . . , ne, virtual receptors rj,k, k = 1, . . . , nr, and a single
control subsystem cj. The general structure of an embodied agent is presented in �g. 1.
Virtual receptors perform sensor reading aggregation, consisting in either the composition
of information obtained from several exteroceptors or in the extraction of the required data
from one complex sensor (e.g. camera). Moreover the readings obtained from the same
exteroceptors Rj,l may be processed in di�erent ways, so many virtual receptors rj,k can
be formed. The control loop is closed through the environment, i.e. exteroceptor readings
Rj,l are aggregated by virtual receptors to be transmitted to the control subsystem cj which
generates appropriate commands for the virtual e�ectors ej to translate into signals driving

1



the e�ectors Ej. This primary loop is supplemented by links going in the opposite direction.
The control subsystem cj can both recon�gure exteroceptors Rj and in�uence the method
how the virtual receptors rj aggregate readings, thus a link from the control subsystem to
the receptor emerges. The control subsystem also acquires proprioceptive data from the
e�ectors. Moreover, an agent through its control subsystem is able to establish a two-way
communication with other agents aj′ , j 6= j′.

CONTROL SUBSYSTEM

Inter­agenttransmission

VIRTUALEFFECTOR

REALRECEPTOR
REALEFFECTOR

aj

VIRTUALRECEPTOR

cj

Ej,h Rj,l

ej,n rj,k

Receptorcommands AggregatedreadingsEffectorcontrol Effectorstate

Receptorcommands ReceptorreadingsEffectorstateEffectorcontrol

Figure 1: Structure of an embodied agent

The control subsystem as well as the virtual e�ectors and receptors use communication
bu�ers to transmit or receive information to/from the other components (�g. 2). A system-
atic denotation method is used to designate both the components and their bu�ers. To make
the description of such a system concise no distinction is being made between the denotation
of a bu�er and its state (its content) � the context is su�cient. In the assumed notation
a one-letter symbol located in the centre (i.e. E , R, e, r, c ) designates the subsystem. To
reference its bu�ers or to single out the state of this component at a certain instant of time
extra indices are placed around this central symbol. The left superscript designates the sub-
system to which the bu�er is connected. The right superscript designates the time instant
at which the state is being considered. The left subscript tells us whether this is an input
(x) or an output (y) bu�er. When the left subscript is missing the internal memory of the
subsystem is referred to. The right subscript may be complex, with its elements separated
by comas. They designate the particular: agent, its subsystem and bu�er element. Bu�er
elements can also be designated by placing their names in square brackets. For instance e

xc
i
j

denotes the contents of the control subsystem input bu�er of the agent aj acquired from
the virtual e�ector at instant i. Similarly functions are labeled. The central symbol for any
function is f , the left superscript designates the owner of the function and the subsystem
that this function produces the result of its computations for, the right superscript: τ , σ,
ε refer to the terminal, initial and error conditions respectively (each one of them being
a predicate). A missing right superscript denotes a transition function. The list of right sub-
scripts designates a particular function. Thus the internal structure of an agent is presented
in �g. 2.

2.2 General subsystem behaviour

Fig. 3 presents the general work-cycle of any subsystem s, where s ∈ {c, e, r}, of the agent
aj. The functioning of a subsystem s requires the processing of a transition function which
uses as arguments the data contained in the input bu�ers xsj and the internal memory ssj,

2



Figure 2: Internal structure of an agent aj

to produce the output bu�er values ysj and new memory contents ssj. Hence the subsystem
behaviour is described by a transition function sf j de�ned as:[

ssi+1
j , ys

i+1
j

]
:= sf j(

ssij, xs
i
j). (1)

where i and i+1 are the consecutive discrete time stamps1 and := is the assignment operator2.
Function (1) describes the evolution of the state of a subsystem s. A single function (1) would
be too complex to de�ne it in a monolithic form, thus it is usually decomposed into a set of
partial functions: [

ssi+1
j , ys

i+1
j

]
:= sf j,u(

ssij, xs
i
j), (2)

where u = 0, . . . , nfs . Capabilities of the agent arise from the multiplicity and diversity
of the partial functions of its subsystems. Such a prescription requires rules of switching
between di�erent partial transition functions of a subsystem, thus three additional Boolean
valued functions (predicates) are required:

• sfσj,u de�ning the initial condition,

• sf τj,u representing the terminal condition and

• sf εj,u representing the error condition.

1It should be noted that although all the subsystems use the same symbol to represent the discrete time,

i.e. i, in reality each one of them will have a di�erent sampling period, thus they should be represented

di�erently. However using a di�erent symbol for each subsystem would rather produce confusion or require

extra indices, thus making the outcome less intelligible. The time stamp of the initial step of execution of

any behaviour of any subsystem is symbolised by i0.
2The assignment operator � :=� in the speci�cation of the Core Agent is abbreviated to just the symbol

�=�

3



The �rst one selects the transition function for cyclic execution, while the second determines
when this cyclic execution should terminate. The last one detects that an error has occurred.
Hence a multi-step evolution of the subsystem in a form of a behaviour Bj,u is de�ned as:

sBj,u , sBj,u
(
sfσj,u,

sf τj,u,
sf εj,u

)
(3)

The execution pattern of such a behaviour is presented in �g. 3. The sj• , where j
• ∈ {j, j′},

denotes all subsystems associated with sj (in the case of the control subsystem some of those
subsystems even may not belong to the same agent, hence j′ appears). In reality an error
condition sf εj,u does not have to be speci�ed explicitly, as during code implementation any
error detected by the program will terminate the execution of the behaviour in which it
occurred, thus the same result will be attained.

Figure 3: General �ow chart of a subsystem behaviour sBj,u, where • represents any subsys-
tem including another agent

The behaviours sBj,u can be associated with the nodes of a graph and initial conditions
with its arcs, thus a �nite state automaton representation results (�g. 4). The set of initial
conditions singling out the next behaviour to be executed can be used to de�ne a state
transition table of the automaton. Behaviour selection represented by a hexagonal block is
executed as a stateless switch de�ned by the initial conditions sfσj,u.

sBj,0 is the default (idle)
behaviour, activated when no other behaviour can be activated.

4



Figure 4: State graph of the behaviour selection automaton

3 Core agent acore

The core agent agent acore is described as a general embodied agent.

3.1 Virtual e�ector ecore,body

The virtual e�ector ecore,body is responsible for controlling the body motions. It should be
noted that all the activities performed by the NAOqi functions are executed within the real
e�ector, thus NAOqi library is treated as an element of the real e�ector Ecore,body. Below the
contents of transmission bu�ers as well as the transition functions and terminal conditions
of the behaviours of the virtual e�ector are de�ned. A dash in the de�nition of a transition
function implies that a certain output variable or a certain set of output variables is not
assigned a value. This further implies that the values of those variables are not sent to
an associated subsystem. Usually such variables are not mentioned in the de�nition of the
transfer function, but if they appear in some iterations of the behaviour and in some they
do not, for the purpose of completeness the lack of value assignment is signalled by a dash.
Similarly, if a certain behaviour is based on a transition function that produces no output
values, this is signalled by a dash, otherwise one could come to a false conclusion that there
exist behaviours not based on transition functions. The global frame is initialized when the
robot is turned on and is �xed with the robot initial position.

3.1.1 Communication bu�ers and internal memory of the virtual e�ector ecore,body

• Internal memory eecore,body:

dja � desired joint angles with parameters (memorized argument of the
INTERPOLATION command)],
dja = [joints, values, fractionMaxSpeed], where:
joints � a name or names of joints,
values � one or more angles in radians,
fractionMaxSpeed � fraction of the maximum speed during the angles

interpolation,
tm � termination marker
pose � current robot position estimated by the Extended Kalman Filter (EKF),

pose = [x, y, θ], where:
x � current robot position with respect to the X-axis of the

global coordinate system, in meters,
y � current robot position with respect to the Y-axis of the

global coordinate system, in meters,
θ � current angle around the Z-axis, in radians.

5



• Real e�ector control Eyecore,body:
3

cmd � command from the virtual e�ector,
data_name � data name of a parameter stored in a NAOqi ALMemory module,
velocity � velocity of motion with respect to the robot coordinate frame

(memorized argument of the MOVE command);
velocity = [vx, vy, ω], where:
vx � velocity along the X-axis, in meters per second,
vy � velocity along the Y-axis, in meters per second,
ω � velocity the around Z-axis, in radians per second,

dpose � desired position with respect to the robot coordinate frame
(memorized argument of the MOVE command);
dpose = [x, y, θ], where:
x � distance along the X-axis, in meters,
y � distance along the Y-axis, in meters,
θ � rotation around the Z-axis, in radians,

ext_collis � parameters for setting external collision protection for a given
robot body
ext_collis = [body, flag], where:
body � the name of the body {"All", "Move", "Arms", "LArm",

"RArm"}
flag � TRUE when the body external collision protection has to

be enabled,
walk_arms � parameters for enabling robot arms while walking

walk_arms = [left, right], where:
left � TRUE when the left arm has to be enabled,
right � TRUE when the right arm has to be enabled,

foot_prot � a boolean �ag for setting foot contact protection. If the �ag is TRUE
then the protection is enabled,

stiffness � name or names of joints for which sti�ness will be set,
stiffness = [joints, values], where:
joints � a name or names of joints,
values � sti�ness value in the range of 0.0 and 1.0,

dpost � arguments for posture interpolation (memorized argument of the
POSTURE command),
dpost = [posture, speed], where:
posture � a name of a prede�ned posture to be attained,
speed � relative speed between 0.0 and 1.0,

dja � desired joint angles with parameters (memorized argument of the
INTERPOLATION command)],
dja = [joints, values, fractionMaxSpeed], where:
joints � a name or names of joints,
values � one or more angles in radians,
fractionMaxSpeed � fraction of the maximum speed during the

interpolation of angles,

• Proprioceptive input from the real e�ector Execore,body:

3NAOqi software controls NAO at 50 Hz, i.e. the control period is 20 ms, thus the motion increment must

be de�ned for that period � we call it real e�ector control step. Thus the sampling period of this virtual

e�ector is 20 ms.

6



attained � returns TRUE if the prede�ned posture or desired position was attained,
cpost � returns current robot posture,
cja � current joint angles,

cja = [joints, values], where:
joints � a name or names of joints,
values � one or more angles in radians,

odm � current robot position expressed in Cartesian coordinates,
odm = [x, y], where:
x � current robot position with respect to the X-axis of the

global coordinate system, in meters,
y � current robot position with respect to the Y-axis of the

global coordinate system, in meters,
cmp � current motor positions,
value � current value of a parameter named as c

xecore,body[data_name]; this
value is transmitted to the control subsystem in response to its querry

im � current inertial measurement unit (IMU) data,
im = [θ, ω], where:
θ � current robot orientation angle around the Z-axis in radians,
ω � velocity around the Z-axis, in radians per second,

• Input from the control subsystem c
xecore,body:

7



cmd � command from the control subsystem,
cmd ∈ {MOVE, STOP,POSTURE, INTERPOLATION,GET},

arg � arguments from the control subsystem;
arg = [velocity, dpose, dpost, dja, data_name], where:
velocity � velocity of motion with respect to the robot coordinate

frame (memorized argument of the MOVE command);
velocity = [vx, vy, ω], where:
vx � velocity along the X-axis, in meters per second,
vy � velocity along the Y-axis, in meters per second,
ω � velocity around the Z-axis, in radians per second,

dpose � desired position with respect to the robot coordinate frame
(memorized argument of the MOVE command);
dpose = [x, y, θ], where:
x � distance along the X-axis, in meters,
y � distance along the Y-axis, in meters,
θ � rotation around the Z-axis, in radians,

dpost � arguments for posture interpolation (memorized argument
of the POSTURE command),
dpost = [posture, speed], where:
posture � name of a prede�ned posture to be attained,
speed � relative speed between 0.0 and 1.0,

dja � desired joint angles with parameters (memorized argument
of the INTERPOLATION command)],
dja = [joints, values, fractionMaxSpeed], where:
joints � a name or names of joints,
values � one or more angles in radians,
fractionMaxSpeed � fraction of the maximum speed

during the interpolation of angles,
stiffness � name or names of joints for which sti�ness will be set,

stiffness = [joints, values], where:
joints � a name or names of joints,
value � sti�ness value in the range of 0.0 and 1.0,

data_name � is a string that contains a name of a parameter stored in a
NAOqi ALMemory module. It is used to query the value of
the NAOqi parameter stored in the AlMemory module

• Proprioceptive output to the control subsystem c
yecore,body:

attained � TRUE if the prede�ned posture, desired interpolation or position was
attained or executed,

value � current value of a NAOqi parameter, named as data_name,
received from the AlMemory module.

pose � current robot position estimated by Extended Kalman Filter (EKF),
pose = [x, y, θ], where:
x � current robot position in X-axis in Cartesian coordinate sys-

tem in meters,
y � current robot position in Y-axis in Cartesian coordinate sys-

tem in meters,
θ � current angle rotated around Z-axis in radians.

3.1.2 Behaviour e
+Bcore,body,idle of the virtual e�ector ecore,body

• Transition function:

8



e,ef core,body,idle ,
eei+1

core,body[pose] = EKF
(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)

e,cf core,body,idle ,
c
ye
i+1
core,body[pose] = EKF

(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)
This transition function estimates the current robot position based on the data received
from the real e�ector Ecore,body. The EKF function is an Extended Kalman Filter
(EKF).

• Terminal condition

ef τcore,body,idle , (cxe
i
core,body[cmd] = MOVE) ∨ (cxe

i
core,body[cmd] = POSTURE)∨

(cxe
i
core,body[cmd] = INTERPOLATION) ∨ (cxe

i
core,body[cmd] = GET)∨

(cxe
i
core,body[cmd] = STIFFNESS) ∨ (cxe

i
core,body[cmd] = MOVE_TO)

When one of the above mentioned commands is obtained from the control subsystem
the virtual e�ector stops being idle and immediately commences with the commanded
motion.

3.1.3 Behaviour e
+Bcore,body,move of the virtual e�ector ecore,body

• Transition functions:

e,Ef core,body,move ,



E
ye
i+1
core,body[cmd] = MOVE

E
ye
i+1
core,body[velocity] = c

xe
i
core,body[arg[velocity]]

E
ye
i+1
core,body[ext_collis] = [”All”,FALSE]

E
ye
i+1
core,body[walk_arms] = [TRUE,TRUE]

E
ye
i+1
core,body[foot_prot] = TRUE


for i = i0

E
ye
i+1
core,body = − for i 6= i0∧

c
xe
i
core,body[cmd] 6= STOP

E
ye
i+1
core,body[cmd] = MOVE

E
ye
i+1
core,body[velocity] = 0

 for i 6= i0∧
c
xe
i
core,body[cmd] = STOP

e,ef core,body,move ,
eei+1

core,body[tm] =


FALSE for i = i0
− for i 6= i0 ∧ c

xe
i
core,body[cmd] 6= STOP

TRUE for i 6= i0 ∧ c
xe
i
core,body[cmd] = STOP

eei+1
core,body[pose] = EKF

(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)

e,cf core,body,move ,
c
ye
i+1
core,body[pose] = EKF

(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)
9



This transition function transfers to the real e�ector Ecore,body the command and the
velocity at which the body should move and subsequently monitors the input from
the control subsystem ccore. The EKF function estimates the current robot position
using the Extended Kalman Filter (EKF). Once the STOP command is obtained from
the control subsystem the commanded velocity, for the real e�ector, is reset to zero.
Moreover, the estimated current robot position is transferred to the control subsystem
ccore,body. If the STOP command is not delivered the robot will, in principle, move
endlessly with the prescribed velocity. The NAOqi move function was used in the
activity of behaviour e

+Bcore,body,move.

• Terminal condition:

ef τcore,body,move ,
eeicore,body[tm] = TRUE

The STOP command obtained from the control subsystem switches the termination
marker eeicore,body[tm] and this, in the next, control step causes the termination of the
motion.

3.1.4 Behaviour e
+Bcore,body,moveto of the virtual e�ector ecore,body

• Transition functions:

e,Ef core,body,moveto ,



E
ye
i+1
core,body[cmd] = MOVE_TO

E
ye
i+1
core,body[dpose] = c

xe
i
core,body[arg[dpose]]

E
ye
i+1
core,body[ext_collis] = [”All”,FALSE]

E
ye
i+1
core,body[walk_arms] = [TRUE,TRUE]

E
ye
i+1
core,body[foot_prot] = TRUE


for i = i0

E
ye
i+1
core,body = − for i 6= i0∧

c
xe
i
core,body[cmd] 6= STOP

E
ye
i+1
core,body[cmd] = STOP_MOVE for i 6= i0∧

c
xe
i
core,body[cmd] = STOP

e,ef core,body,moveto ,
eei+1

core,body[tm] =


FALSE for i = i0
− for i 6= i0 ∧ c

xe
i
core,body[cmd] 6= STOP

TRUE for i 6= i0 ∧ c
xe
i
core,body[cmd] = STOP∨

E
xe
i
core,body[attained] = TRUE

eei+1
core,body[pose] = EKF

(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)

e,cf core,body,moveto ,
c
ye
i+1
core,body[pose] = EKF

(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)
This transition function transfers to the real e�ector Ecore,body the command and the
desired robot position with respect to the robot coordinate frame and subsequently

10



monitors the input from the control subsystem ccore. The EKF function estimates the
current robot position using the Extended Kalman Filter (EKF). Once the STOP com-
mand is obtained from the control subsystem the movement is terminated. Moreover,
the estimated current robot position is transferred to the control subsystem ccore,body.
The NAOqi moveto function was used in the activity of behaviour e

+Bcore,body,moveto.

• Terminal condition:

ef τcore,body,moveto ,
eeicore,body[tm] = TRUE

The STOP command obtained from the control subsystem switches the termination
marker eeicore,body[tm] and this, in the next, control step causes the termination of the
motion.

3.1.5 Behaviour e
+Bcore,body,posture of the virtual e�ector ecore,body

• Transition function:

e,Ef core,body,posture ,


E
ye
i+1
core,body[cmd] = GO_TO_POSTURE

E
ye
i+1
core,body[dpost] = c

xe
i
core,body[arg[dpost]]

E
ye
i+1
core,body[stiffness] = [”Body”, 1.0]

 for i = i0

E
ye
i+1
core,body = − for i 6= i0∧

c
xe
i
core,body[cmd] 6= STOP

E
ye
i+1
core,body[cmd] = STOP_MOVE for i 6= i0∧

c
xe
i
core,body[cmd] = STOP

e,cf core,body,posture ,
c
ye
i+1
core,body[attained] =


E
xe
i
core,body[attained] for new

(
E
xe
i
core,body[attained]

)
FALSE for cxe

i
core,body[cmd] = STOP

− otherwise
c
ye
i+1
core,body[pose] = EKF

(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)
where new is a predicate being TRUE when a new value of its argument is obtained.

e,ef core,body,posture ,
eei+1

core,body[tm] =


FALSE for i = i0
− for i 6= i0 ∧ c

xe
i
core,body[cmd] 6= STOP

TRUE for i 6= i0 ∧
(
c
xe
i
core,body[cmd] = STOP∨

new
(
E
xe
i
core,body[attained]

))
eei+1

core,body[pose] = EKF
(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)

11



This transition function transfers to the real e�ector Ecore,body the prede�ned pos-
ture to be attained with the relative speed. Once the STOP command is obtained
from the control subsystem the commanded posture interpolation is terminated. The
EKF function estimates the current robot position using the Extended Kalman Filter
(EKF). The NAOqi goToPosture function was used in the activity of the behaviour
e

+Bcore,body,posture. Upon termination of this behaviour the real e�ector Ecore,body trans-
fers to the virtual e�ector ecore,body the information whether the posture was attained.
This information and the estimated current robot position by EKF are further trans-
ferred to the control subsystem ccore,body.

• Terminal condition:

ef τcore,body,posture ,
eeicore,body[tm] = TRUE

The termination marker eeicore,body[tm] is switched when the STOP command is ob-
tained from the control subsystem or the information about the posture interpolation
is obtained from the real e�ector Ecore,body. The value TRUE of the termination marker
causes the termination of the behaviour in the next control step.

3.1.6 Behaviour e
+Bcore,body,inter of the virtual e�ector ecore,body

• Transition function:

e,Ef core,body,inter ,


E
ye
i+1
core,body[cmd] = SET_ANGLES

E
ye
i+1
core,body[dja] = c

xe
i
core,body[arg[dja]]

E
ye
i+1
core,body[stiffness] = [dja, 1.0]

 for i = i0

E
ye
i+1
core,body = − for i 6= i0∧

c
xe
i
core,body[cmd] 6= STOP

E
ye
i+1
core,body[cmd] = STOP_MOVE for i 6= i0∧

c
xe
i
core,body[cmd] = STOP

e,cf core,body,inter ,
c
ye
i+1
core,body[attained] =


TRUE for eeicore,body[dja] = E

xe
i
core,body[cja]

FALSE for cxe
i
core,body[cmd] = STOP

− otherwise
c
ye
i+1
core,body[pose] = EKF

(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)

12



e,ef core,body,inter ,

eei+1
core,body[tm] =



FALSE for i = i0
− for i 6= i0∧

c
xe
i
core,body[cmd] 6= STOP

TRUE for i 6= i0∧(
c
xe
i
core,body[cmd] = STOP∨

eeicore,body[dja] = E
xe
i
core,body[cja]

)
∨

new
(
E
xe
i
core,body[attained]

))
eei+1

core,body[dja] = c
xe
i
core,body[arg[dja]] for i = i0

eei+1
core,body[pose] = EKF

(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)
This transition function transfers to the real e�ector Ecore,body the vector of joint angles
and the fraction of maximum speed. The NAOqi setAngles function was used in the
activity of the behaviour e

+Bcore,body,inter. The EKF function estimates the current
robot position using the Extended Kalman Filter (EKF). Once the STOP command is
obtained from the control subsystem the commanded joint interpolation is terminated
and the real e�ector Ecore,body returns to the virtual e�ector ecore,body the information
whether the posture was attained. This information and the estimated current robot
position are transferred to the control subsystem ccore,body.

• Terminal condition:

ef τcore,body,inter ,
eeicore,body[tm] = TRUE

The termination marker eeicore,body[tm] is switched when the STOP command is ob-
tained from the control subsystem or the desired joint angles are attained. The value
TRUE of the termination marker causes the termination of the behaviour in the next
control step.4

3.1.7 Behaviour e
+Bcore,body,set_stiffness of the virtual e�ector ecore,body

• Transition function:

e,Ef core,body,stiffness ,


E
ye
i+1
core,ls[cmd] = STIFFNESS_INTERPOL

E
ye
i+1
core,ls[stiffness] = c

xe
i
core,ls[arg[stiffness]]

e,ef core,body,stiffness , eei+1
core,body[pose] =

EKF
(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)

e,cf core,body,stiffness ,
c
ye
i+1
core,body[pose] = EKF

(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)
4The equality of current and desired position should be treated approximately � as in any system taking

into account noisy measurements.

13



This transition function transfers to the real e�ector Ecore,body the sti�ness parameters
to be set for the given joints and using Extended Kalman Filter (EKF) estimates the
current robot position. The NAOqi sti�nessInterpolation function was used in the
activity of the behaviour e

+Bcore,body,stiffness.

• Terminal condition:

rf τcore,body,stiffness , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

3.1.8 Behaviour e
+Bcore,body,get of the virtual e�ector ecore,body

• Transition function:

e,cf core,body,get ,


c
ye
i+1
core,body = − for ¬new

(
E
xe
i
core,body[value]

)
c
ye
i+1
core,body[value] = E

xe
i
core,body[value] for new

(
E
xe
i
core,body[value]

)
c
ye
i+1
core,body[pose] = EKF

(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)
where new is a predicate being TRUE when a new value of its argument is obtained.

e,Ef core,body,get ,


E
ye
i+1
core,body[cmd] = GET_DATA

E
ye
i+1
core,body[data_name] = c

xe
i
core,body[arg[data_name]]

 for i = i0

E
ye
i+1
core,body = − for i 6= i0

e,ef core,body,get ,
eei+1

core,body[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
E
xe
i
core,body[value]

)
TRUE for i 6= i0 ∧ new

(
E
xe
i
core,body[value]

)
eei+1

core,body[pose] = EKF
(
E
xe
i
core,body[odm], Exe

i
core,body[im], eeicore,body[pose]

)
The transition function returns to the control subsystem c

yecore,body the current value

of a parameter c
ye
i+1
core,body[value] named as data_name. It estimates using Extended

Kalman Filter (EKF) the current robot position.

• Terminal condition:

ef τcore,body,get ,
eeicore,body[tm] = TRUE

The termination marker eeicore,body[tm] is switched when the value of the desired param-
eter is obtained from the real e�ector Ecore,body. The value TRUE of the termination
marker causes the termination of the behaviour in the next control step.

14



s1 e
+Bcore,body,idle

s2

e
+Bcore,body,move

s3

e
+Bcore,body,posture

s4 e
+Bcore,body,inters5e

+Bcore,body,get

s6

e
+Bcore,body,moveto

s7

e
+Bcore,body,stiffness

σ = MOVE

σ = POSTURE

σ = INTERPOLATION

σ = GET

σ = MOVETO

σ = STIFFNESS

Figure 5: FSM governing the activities of the body virtual e�ector ecore,body of the core agent

acore; σ , c
xe
i
core,body[cmd]

3.1.9 FSM governing the virtual e�ector ecore,body

The seven state automaton (FSM) governing the activities of the body virtual e�ector
ecore,body is presented in �g. 5.

3.2 Virtual e�ector ecore,ls

The virtual e�ector ecore,ls controls the loudspeaker.

3.2.1 Communication bu�ers and internal memory of the virtual e�ector ecore,ls

• Internal memory eecore,ls:

tm � termination marker

• Real e�ector control Eyecore,ls:

cmd � command from the virtual e�ector,
text � current text to synthesize,
data_name � data name of a parameter stored in a NAOqi ALMemory module,
fp � the path to the �le that will be reproduced,
begin_position � position in second where the playing should begin,
params � loudspeaker virtual e�ector parameters,

params = [dvt, dl, dv, spr], where:
dvt � desired voice type,
dl � desired language,
dv � desired volume,
spr � stereo panorama requested (-1.0 : left, 1.0 : right,

0.0 : center),

• Proprioceptive input from the real e�ector Execore,ls:

synthesized � returns TRUE when the current text synthesis is �nished
value � current value of a parameter named as E

ye
i+1
core,body[data_name]

• Input from the control subsystem c
xecore,ls:

15



cmd � command from the control subsystem, cmd ∈ {SAY,PLAY, STOP,GET},
arg � arguments from the control subsystem,

arg = [text, fp, params, data_name, volume, spr, playLoop,
begin_position], where:
text � the text to be transformed into the synthesized

sound,
fp � the path to the �le that will be reproduced,
params � loudspeaker virtual e�ector parameters,

params = [dvt, dl, dv, spr], where:
dvt � desired voice type,
dl � desired language,
dv � desired volume,
spr � stereo panorama requested (-1.0 : left,

1.0 : right, 0.0 : center),
data_name � data_name is a string that contains a name of

a parameter stored in a NAOqi ALMemory
module, it is used to query the value of the NAOqi
parameter stored in the AlMemory module,

playLoop � plays a �le in a loop if the �ag is set to TRUE,
otherwise plays once,

begin_position � position in second where the playing should begin,

• Proprioceptive output to the control subsystem c
yecore,ls:

reply � information about the termination of sound synthesis,
value � current value of a NAOqi parameter, named as data_name,

received from the AlMemory module.

3.2.2 Behaviour e
+Bcore,ls,idle of the virtual e�ector ecore,ls

• Transition function:

ef core,ls,idle , ye
i+1
core,ls = −

• Terminal condition:

ef τcore,ls,idle , (cxe
i
core,ls[cmd] = SAY) ∨ (cxe

i
core,ls[cmd] = PLAY) ∨ (cxe

i
core,ls[cmd] = GET)

∨(cxe
i
core,ls[cmd] = SET_PARAMS) ∨ (cxe

i
core,ls[cmd] = STOP)

When one of the above mentioned commands is obtained from the control subsystem
the virtual e�ector stops being idle to immediately commence with the commanded
behaviour.

16



3.2.3 Behaviour e
+Bcore,ls,say of the virtual e�ector ecore,ls

• Transition function:

e,Ef core,ls,say ,


E
ye
i+1
core,ls[cmd] = SAY

E
ye
i+1
core,ls[text] = c

xe
i
core,ls[arg[text]]

E
ye
i+1
core,ls[params[dl]] = c

xe
i
core,ls[arg[params[dl]]]

 for i = i0

E
ye
i+1
core,ls = − for i 6= i0 ∧ c

xe
i
core,ls[cmd] 6= STOP

E
ye
i+1
core,ls[cmd] = STOP_ALL for i 6= i0 ∧ c

xe
i
core,ls[cmd] = STOP

e,ef core,ls,say , eei+1
core,ls[tm] =


FALSE for i = i0
− for i 6= i0 ∧ c

xe
i
core,ls[cmd] 6= STOP

TRUE for i 6= i0 ∧
(
c
xe
i
core,ls[cmd] = STOP∨

E
xe
i
core,ls[synthesized] = TRUE

)

e,cf core,ls,say , c
ye
i+1
core,ls[reply] ={

TRUE when
(
E
xe
i
core,ls[synthesized] = TRUE

)
∨
(
c
xe
i
core,ls[cmd] = STOP

)
− otherwise

These transition functions transfer to the real e�ector Ecore,ls the text to synthesize
and subsequently monitor the input from the control subsystem ccore. Once the STOP
command is obtained from the control subsystem the commanded text synthesis is
interrupted. If the STOP command is not delivered the sound will be, in principle,
synthesized until the information about synthesis termination will be obtained from
the real e�ector Ecore,ls. It should be noted that the activities performed by the NAOqi
say or stopAll functions are executed within the real e�ector Ecore,ls.

• Terminal condition:

ef τcore,ls,say , eeicore,ls[tm] = TRUE

The termination marker eeicore,ls[tm] is switched when the STOP command is obtained
from the control subsystem or the information about synthesis termination is delivered
by the real e�ector Ecore,ls. The value TRUE of the termination marker causes the
termination of the behaviour in the next control step.

3.2.4 Behaviour e
+Bcore,ls,play of the virtual e�ector ecore,ls

• Transition function:

17



e,Ef core,ls,play ,

E
ye
i+1
core,ls[cmd] = PLAY_FILE_IN_LOOP

E
ye
i+1
core,ls[fp] = c

xe
i
core,ls[arg[fp]]

E
ye
i+1
core,ls[params[dv]] = c

xe
i
core,ls[arg[params[dv]]]

E
ye
i+1
core,ls[params[spr]] = c

xe
i
core,ls[arg[params[spr]]]


for playLoop = TRUE

E
ye
i+1
core,ls[cmd] = PLAY_FROM_POSITION

E
ye
i+1
core,ls[fp] = c

xe
i
core,ls[arg[fp]]

E
ye
i+1
core,ls[params[dv]] = c

xe
i
core,ls[arg[params[dv]]]

E
ye
i+1
core,ls[params[spr]] = c

xe
i
core,ls[arg[params[spr]]]

E
ye
i+1
core,ls[begin_position] = c

xe
i
core,ls[arg[begin_position]]


for playLoop = FALSE

These transition functions transfer to the real e�ector Ecore,ls the command, path to
the �le that will be played, volume and the balance. It should be noted that all the
activities performed by the NAOqi playFileInLoop or playFileFromPosition function
are executed within the real e�ector Ecore,ls.

• Terminal condition:
rf τcore,ls,play , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

3.2.5 Behaviour e
+Bcore,ls,stop of the virtual e�ector ecore,ls

• Transition function:

e,Ef core,ls,stop ,
E
ye
i+1
core,ls[cmd] = STOP_ALL

These transition function transfer to the real e�ector Ecore,ls the command to stop
sound synthesis. It should be noted that the activity performed by the NAOqi stopAll
function is executed within the real e�ector Ecore,ls.

• Terminal condition:

rf τcore,ls,stop , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

3.2.6 Behaviour e
+Bcore,ls,set_params of the virtual e�ector ecore,ls

• Transition function:

e,Ef core,ls,set_params ,


E
ye
i+1
core,ls[cmd] = SET_PARAMETERS

E
ye
i+1
core,ls[params] = c

xe
i
core,ls[arg[params]]

This transition function transfers to the real e�ector Ecore,ls the parameters obtained
from the control subsystem. It should be noted that all the activities performed by the
NAOqi setParameter and other functions are executed within the real e�ector Ecore,ls.

18



• Terminal condition:

rf τcore,ls,set_params , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

3.2.7 Behaviour e
+Bcore,ls,get of the virtual e�ector ecore,ls

• Transition function:

e,cf core,ls,get ,


c
ye
i+1
core,ls = − for ¬new

(
E
xe
i
core,ls[value]

)
c
ye
i+1
core,ls[value] = E

xe
i
core,ls[value] for new

(
E
xe
i
core,ls[value]

)
where new is a predicate being TRUE when a new value of its argument is obtained.
e,Ef core,ls,get ,


E
ye
i+1
core,ls[cmd] = GET_DATA

E
ye
i+1
core,ls[data_name] = c

xe
i
core,ls[arg[data_name]]

 for i = i0

E
ye
i+1
core,ls = − for i 6= i0

e,ef core,ls,get ,
eei+1

core,ls[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
E
xe
i
core,ls[value]

)
TRUE for i 6= i0 ∧ new

(
E
xe
i
core,ls[value]

)
The transition function returns to the control subsystem c

yecore,ls the current value of

the parameter c
ye
i+1
core,ls[value] named as data_name.

• Terminal condition:

ef τcore,ls,get ,
eeicore,ls[tm] = TRUE

The termination marker eeicore,ls[tm] is switched when the value of a desired parameter
is obtained from the real e�ector Ecore,ls. The value TRUE of the termination marker
causes the termination of the behaviour in the next control step.

3.2.8 FSM governing the virtual e�ector ecore,ls

The �ve state automaton (FSM) governing the activities of the loudspeaker virtual e�ector
ecore,ls is presented in �g. 11.

3.3 Virtual receptor rcore,mic

The virtual receptor rcore,mic is responsible for acquiring and aggregating data obtained by
the microphones. It should be noted that all the activities performed by the NAOqi functions
are executed within the real receptor, thus NAOqi library is treated as an element of the
real receptor Rcore,mic. Below the contents of transmission bu�ers as well as the transition
functions and terminal conditions of the behaviours of the virtual receptor are de�ned. A
dash in the de�nition of a transition function implies that a certain output variable or a
certain set of output variables is not assigned a value. This further implies that the values

19



s1 e
+Bcore,ls,idle

s2

e
+Bcore,ls,play

s3

e
+Bcore,ls,set params

s4 e
+Bcore,ls,says5e

+Bcore,ls,get

s6

e
+Bcore,ls,stop

σ = PLAY

σ = SET PARAMS

σ = SAY

σ = GET

σ = STOP

Figure 6: FSM governing the activities of the body loudspeaker e�ector ecore,ls of the core

agent acore; σ , c
xe
i
core,ls[cmd]

of those variables are not sent to an associated subsystem. Usually such variables are not
mentioned in the de�nition of the transfer function, but if they appear in some iterations of
the behaviour and in some they do not, for the purpose of completeness the lack of value
assignment is signalled by a dash. Similarly, if a certain behaviour is based on a transition
function that produces no output values, this is signalled by a dash, otherwise one could
come to a false conclusion that there exist behaviours not based on transition functions.

3.3.1 Communication bu�ers and internal memory of the virtual receptor rcore,mic

• Internal memory rrcore,mic:

rd � contains raw data from the microphones,
tm � termination marker,
silence � maximum number of iterations during which silence in speech is

acceptable: c
xr
i
core,mic[arg[time]] or c

xr
i
core,mic[arg[st]],

cit � counter (iterator),

• Real receptor control Ryrcore,mic:

rec � TRUE when the recoding is to be triggered,
FALSE when it is to be stopped,

cmd � command from the virtual receptor,
data_name � data name of a parameter stored in a NAOqi ALMemory module,
fp � �le containing the recorded signal samples,
threshold � threshold required for word recognition,

• Input from the real receptor Rxrcore,mic:

enrg � contains signal energy for each microphone,
value � current value of a parameter named as c

xrcore,touch[data_name]; this
value is transmitted to the control subsystem in response to its query

rw � contains a list of pairs,
rw = [(recog_word, recog_prob), ...], where:
recog_word � recognized word,
recog_prob � probability of correct speech recognition for

recog_word,

20



• Input from the control subsystem c
xrcore,mic:

cmd � command from the control subsystem,
cmd ∈ {RECORD,REGISTER,ABORT,RECOGNIZE,GET},

arg � arguments from control subsystem,
arg = [params, dct, data_name, fp, sampling_period, time, enrg,
st], where:
params � contains microphone parameters such as: sample

rate and microphone channels,
dct � contains the list of words that should be recognized,
data_name � is a string that contains a name of a parameter

stored in a NAOqi ALMemory module. It is used
to query the value of the NAOqi parameter stored
in the AlMemory module

fp � �le containing the recorded signal samples,
sampling_period � sampling period of microphone virtual receptor rcore,mic,
time � commanded duration of the recording,
enrg � threshold of signal energy for microphones,
st � time during which the microphone signal energy is

compared with the threshold. When during this
time the signal will be lower than the threshold
then the recording stops,

threshold � threshold required for word recognition,

• Output produced by the virtual receptor for the control subsystem c
yrcore,mic:

rec � TRUE when the recoding is terminated,
rw � recognized word with the biggest probability of word recognition,
value � current value of a NAOqi parameter, named as data_name,

received from the AlMemory module.

3.3.2 Behaviour r
+Bcore,mic,idle of the virtual receptor rcore,mic

• Transition function:

rf core,mic,idle , yr
i+1
core,mic = −

• Terminal condition:

rf τcore,mic,idle , (cxr
i
core,mic[cmd] = RECORD) ∨ (cxr

i
core,mic[cmd] = REGISTER)∨

(cxr
i
core,mic[cmd] = GET) ∨ (cxr

i
core,mic[cmd] = RECOGNIZE)

When any of the above mentioned commands is obtained from the control subsystem
the virtual receptor stops being idle and immediately transfers to a state in which it
gathers sound samples.

3.3.3 Behaviour r
+Bcore,mic,record of the virtual receptor rcore,mic

• Transition functions:

21



r,Rf core,mic,record ,


R
yr
i+1
core,mic[cmd] = START_RECORDING

R
yr
i+1
core,mic[fp] = c

xr
i
core,mic[arg[fp]]

 for i = i0

R
yr
i+1
core,mic = − for i 6= i0 ∧ i < i0+

rri+1
core,mic[silence]

R
yr
i+1
core,mic[cmd] = STOP_RECORDING for i = i0+

rri+1
core,mic[silence]

r,rf core,mic,record ,
rri+1

core,mic[tm] =


FALSE for i = i0
− for i 6= i0 ∧ i < i0+

rri+1
core,mic[silence]

TRUE for i = i0+
rri+1

core,mic[silence]
rri+1

core,mic[silence] = c
xr
i
core,mic[arg[time]]/ c

xr
i
core,mic[arg[sampling_period]] for i = i0

r,cf core,mic,record , c
yr
i+1
core,mic[rec] =


TRUE for i = i0+

rri+1
core,mic[silence]

− otherwise

These transition functions transfer to the real receptor Rcore,mic the command and the
destination �le path, where the sound will be recorded. The virtual receptor rcore,mic

initiates the recording and if in the speech a period of silence occurs then it waits
at the most rri+1

core,mic[silence] iterations and stops recording. The recording is done
by the NAOqi function startMicrophonesRecording. When the time elapses then the
virtual receptor calls the NAOqi function stopMicrophonesRecording and the recording
is terminated.

• Terminal condition:

rf τcore,mic,record , rricore,mic[tm] = TRUE

The termination marker rricore,mic[tm] is switched after rri+1
core,mic[silence] iterations. The

value TRUE of the termination marker causes the termination of the behaviour in the
next control step.

3.3.4 Behaviour r
+Bcore,mic,register of the virtual receptor rcore,mic

• Transition functions:

22



r,Rf core,mic,register ,



R
yr
i+1
core,mic[cmd] = START_RECORDING

R
yr
i+1
core,mic[fp] = c

xr
i
core,mic[arg[fp]]

R
yr
i+1
core,mic[enable_mic_comp] = TRUE

R
yr
i+1
core,mic[params] = c

xr
i
core,mic[arg[params]]


for i = i0

R
yr
i+1
core,mic = −

for i 6= i0∧
rricore,mic[cit] <
rricore,mic[silence]

R
yr
i+1
core,mic[cmd] = STOP_RECORDING

for i 6= i0∧
rricore,mic[cit] =
rricore,mic[silence]

r,rf core,mic,register ,

rri+1
core,mic[tm] =


FALSE for i = i0
− for i 6= i0 ∧ rricore,mic[cit] < rricore,mic[silence]
TRUE for rricore,mic[cit] = rricore,mic[silence]

rri+1
core,mic[silence] =

c
xr
i
core,mic[arg[st]]/ c

xr
i
core,mic[arg[sampling_period]] for i = i0

rri+1
core,mic[cit] =


0 for i = i0∨

R
xr
i
core,mic[enrg] ≥ c

xr
i
core,mic[arg[enrg]]

rricore,mic[cit] + 1 for R
xr
i
core,mic[enrg] < c

xr
i
core,mic[arg[enrg]]

r,cf core,mic,register ,
c
yr
i+1
core,mic[rec] =

{
TRUE for rricore,mic[cit] = rricore,mic[silence]
− otherwise

These transition functions transfer to the real receptor Rcore,mic the command, the desti-
nation �le path, recording parameters and they additionally enable microphone compu-
tations. The virtual receptor rcore,mic initiates the recording and waits rri+1

core,mic[silence]

iterations until the microphone energy measurement Rxr
i
core,mic[enrg] surpasses the thresh-

old c
xr
i
core,mic[arg[enrg]]. If none of the measurements exceeds the threshold then the

behaviour terminates. The recording is done by the NAOqi function subscribe. When
the sampling time is exceeded then the virtual receptor calls the NAOqi function un-
subscribe and then the recording is terminated.

• Terminal condition:

rf τcore,mic,register ,
rricore,mic[tm] = TRUE

The termination marker rricore,mic[tm] is switched when during rri+1
core,mic[silence] itera-

tions each microphone energy measurement Rxr
i
core,mic[enrg] does not exceed the thresh-

old c
xr
i
core,mic[arg[enrg]]. The value TRUE of the termination marker causes the termi-

nation of the behaviour in the next control step.

23



3.3.5 Behaviour r
+Bcore,mic,recog of the virtual receptor rcore,mic

• Transition functions:

r,Rf core,mic,recog ,


R
yr
i+1
core,mic[cmd] = SUBSCRIBE

R
yr
i+1
core,mic[dct] = c

xr
i
core,mic[arg[dct]]

 for i = i0
R
yr
i+1
core,mic[cmd] = GET_DATA

R
yr
i+1
core,mic[data_name] = LastWordRecognized

 for i = i0 + 1

R
yr
i+1
core,mic[cmd] = UNSUBSCRIBE

for i > i0 + 1∧
new

(
R
xr
i
core,mic[rw]

)
R
yr
i+1
core,mic = − otherwise

where new is a predicate being TRUE when a new value of its argument is obtained.

r,rf core,mic,recog ,
rri+1

core,mic[tm] =


FALSE for i = i0
− for i 6= i0

TRUE for new
(
R
xr
i
core,mic[rw]

)
rri+1

core,mic[threshold] = c
xr
i
core,mic[arg[threshold]] for i = i0

r,cf core,mic,recog , c
yr
i+1
core,mic[rw] =



fst
(
R
xr

i
core,mic[rw]

)
for new

(
R
xr
i
core,mic[rw]

)
∧

fst
(
R
xr

i
core,mic[rw[recog_prob]]

)
≥

rricore,mic[threshold]

Empty for new
(
R
xr
i
core,mic[rw]

)
∧

fst
(
R
xr

i
core,mic[rw[recog_prob]]

)
<

rricore,mic[threshold]
− otherwise

These transition functions transfer to the real receptor Rcore,mic the recognition com-
mand (initiated by a subscription to a recognition module) and the dictionary with
words to be recognized by the NAOqi functions. In the next iteration it sends to the
real receptor the query to get the value of LastWordRecognized. If the subsequent iter-
ations a new value appears in the bu�er Rxr

i
core,mic[rw] then the virtual receptor sends to

the real receptor a command to terminate the subscription. Additionally the transition
function returns to the control subsystem c

yrcore,mic the recognized word c
yr
i+1
core,mic[rw].

• Terminal condition:

rf τcore,mic,recog , rricore,mic[tm] = TRUE

The termination marker rricore,mic[tm] is switched when the new value appears in the
bu�er Rxr

i
core,mic[rw] from the real receptor Rcore,mic. The value TRUE of the termination

marker causes the termination of the behaviour in the next control step.

24



3.3.6 Behaviour r
+Bcore,mic,get of the virtual receptor rcore,mic

• Transition function:

r,cf core,mic,get ,


c
yr
i+1
core,mic = − for ¬new

(
R
xr
i
core,mic[value]

)
c
yr
i+1
core,mic[value] = R

xr
i
core,mic[value] for new

(
R
xr
i
core,mic[value]

)
where new is a predicate being TRUE when a new value of its argument is obtained.
r,Rf core,mic,get ,


R
yr
i+1
core,mic[cmd] = GET_DATA

R
yr
i+1
core,mic[data_name] = c

xr
i
core,mic[arg[data_name]]

 for i = i0

R
yr
i+1
core,mic = − for i 6= i0

r,rf core,mic,get ,
rri+1

core,mic[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
R
xr
i
core,mic[value]

)
TRUE for i 6= i0 ∧ new

(
R
xr
i
core,mic[value]

)
The transition function returns to the control subsystem c

yrcore,mic the current value of

the parameter c
yr
i+1
core,mic[value] named as data_name.

• Terminal condition:

rf τcore,mic,get ,
rricore,mic[tm] = TRUE

The termination marker rricore,mic[tm] is switched when the value of a desired parameter
is obtained from the real receptor Rcore,mic. The value TRUE of the termination marker
causes the termination of the behaviour in the next control step.

3.3.7 FSM governing the virtual receptor rcore,mic

The �ve state automaton (FSM) governing the activities of the microphone virtual receptor
rcore,mic is presented in �g. 7.

3.4 Virtual receptor rcore,touch

The virtual receptor rcore,touch informs the control subsystem about the current status of its
touch sensors.

3.4.1 Communication bu�ers and internal memory of the virtual receptor rcore,touch

• Internal memory rrcore,touch:

tm � termination marker

• Real receptor control Ryrcore,touch:

cmd � command from the virtual receptor,
data_name � data name of a parameter stored in a NAOqi ALMemory module,

25



s1 r
+Bcore,mic,idle

s2

r
+Bcore,mic,record

s3

r
+Bcore,mic,register

s4 r
+Bcore,mic,recogs5r

+Bcore,mic,get

σ = RECORD

σ = REGISTER

σ = RECOGNIZE

σ = GET

Figure 7: FSM governing the activities of the microphone virtual receptor rcore,mic of the

core agent acore; σ , c
xr
i
core,mic[cmd]

• Input from the real receptor Rxrcore,touch:

value � current value of a parameter named as c
xrcore,touch[data_name]; this

value is transmitted to the control subsystem in response to its query

• Input from the control subsystem c
xrcore,touch:

cmd � command from the control subsystem,
cmd ∈ {GET},

arg � arguments from the control subsystem;
arg = [data_name], where:
data_name � is a string that contains a name of a parameter stored in a

NAOqi ALMemory module. It is used to query the value of
the NAOqi parameter stored in the AlMemory module

• Output produced by the virtual receptor for the control subsystem c
yrcore,touch:

value � current value of a NAOqi parameter, named as data_name,
received from the AlMemory module.

3.4.2 Behaviour r
+Bcore,touch,idle of the virtual receptor rcore,touch

• Transition function:

rf core,touch,idle , yr
i+1
core,touch = −

• Terminal condition:
rf τcore,touch,idle ,

c
xr
i
core,touch[cmd] = GET

When above mentioned command is obtained from the control subsystem the virtual
receptor stops being idle and immediately commences with the commanded get be-
haviour.

3.4.3 Behaviour r
+Bcore,touch,get of the virtual receptor rcore,touch

• Transition function:

26



r,cf core,touch,get ,


c
yr
i+1
core,touch = − for ¬new

(
R
xr
i
core,touch[value]

)
c
yr
i+1
core,touch[value] = R

xr
i
core,touch[value] for new

(
R
xr
i
core,touch[value]

)
where new is a predicate being TRUE when a new value of its argument is obtained.
r,Rf core,touch,get ,


R
yr
i+1
core,touch[cmd] = GET_DATA

R
yr
i+1
core,touch[data_name] = c

xr
i
core,touch[arg[data_name]]

 for i = i0

R
yr
i+1
core,touch = − for i 6= i0

r,rf core,touch,get ,
rri+1

core,touch[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
R
xr
i
core,touch[value]

)
TRUE for i 6= i0 ∧ new

(
R
xr
i
core,touch[value]

)
The transition function returns to the control subsystem c

yrcore,touch the current value

of a parameter c
yr
i+1
core,touch[value] named as data_name.

• Terminal condition:

rf τcore,touch,get ,
rricore,touch[tm] = TRUE

The termination marker rricore,touch[tm] is switched when the value of a desired param-
eter is obtained from the real receptor Rcore,touch. The value TRUE of the termination
marker causes the termination of the behaviour in the next control step.

3.4.4 FSM governing the virtual receptor rcore,touch

The two state automaton (FSM) governing the activities of the touch virtual receptor
rcore,touch is presented in �g. 8.

s1 r
+Bcore,touch,idle

s2 r
+Bcore,touch,get

σ = GET

Figure 8: FSM governing the activities of the touch virtual receptor rcore,touch of the core

agent acore; σ , c
xr
i
core,touch[cmd]

3.5 Virtual receptor rcore,inertial

The virtual receptor rcore,inertial gathers data fom the accelerometer and gyroscope. It may
return to the control subsystem the current 3-axis revolute velocities and accelerations the
center of the body with respect to the robot torso. Moreover, it provides the calculated orien-
tation angles of the body using the data acquired from the gyroscope and the accelerometer.

27



3.5.1 Communication bu�ers and internal memory of the virtual receptor rcore,inertial

• Internal memory rrcore,inertial:

tm � termination marker

• Real receptor control Ryrcore,inertial:

cmd � command from the virtual receptor,
data_name � data name of a parameter stored in a NAOqi ALMemory module,

• Input from the real receptor Rxrcore,inertial:

value � current value of a parameter named as c
xrcore,inertial[data_name]; this

value is transmitted to the control subsystem in response to its query

• Input from the control subsystem c
xrcore,inertial:

cmd � command from the control subsystem; cmd ∈ {GET},
arg � arguments from obtained from the control subsystem;

arg = [data_name], where:
data_name � is a string that contains a name of a parameter stored in a

NAOqi ALMemory module. It is used to query the value of
the NAOqi parameter stored in the AlMemory module

• Output produced by the virtual receptor for the control subsystem c
yrcore,inertial:

value � current value of a NAOqi parameter, named as data_name, received from
the AlMemory module.

3.5.2 Behaviour r
+Bcore,inertial,idle of the virtual receptor rcore,inertial

• Transition function:

rf core,inertial,idle , yr
i+1
core,inertial = −

• Terminal condition:
rf τcore,touch,idle ,

c
xr
i
core,inertial[cmd] = GET

When the above mentioned command is obtained from the control subsystem the
virtual receptor stops being idle and immediately commences with the commanded
send behaviour.

3.5.3 Behaviour r
+Bcore,inertial,get of the virtual receptor rcore,inertial

• Transition function:

r,cf core,inertial,get ,


c
yr
i+1
core,inertial = − for ¬new

(
R
xr
i
core,inertial[value]

)
c
yr
i+1
core,inertial[value] = R

xr
i
core,inertial[value] for new

(
R
xr
i
core,inertial[value]

)
where new is a predicate being TRUE when a new value of its argument is obtained.
r,Rf core,inertial,get ,


R
yr
i+1
core,inertial[cmd] = GET_DATA

R
yr
i+1
core,inertial[data_name] = c

xr
i
core,inertial[arg[data_name]]

 for i = i0

R
yr
i+1
core,inertial = − for i 6= i0

28



r,rf core,inertial,get ,
rri+1

core,inertial[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
R
xr
i
core,inertial[value]

)
TRUE for i 6= i0 ∧ new

(
R
xr
i
core,inertial[value]

)
The transition function returns to the control subsystem c

yrcore,inertial the current value

of a parameter c
yr
i+1
core,inertial[value] named as data_name.

• Terminal condition:

rf τcore,inertial,get ,
rricore,inertial[tm] = TRUE

The termination marker rricore,inertial[tm] is switched when the value of a desired param-
eter is obtained from the real receptor Rcore,inertial. The value TRUE of the termination
marker causes the termination of the behaviour in the next control step.

3.5.4 FSM governing the virtual receptor rcore,inertial

The two state automaton (FSM) governing the activities of the inertial virtual receptor
rcore,inertial is presented in �g. 9.

s1 r
+Bcore,inertial,idle

s2 r
+Bcore,inertial,get

σ = GET

Figure 9: FSM governing the activities of the inertial virtual receptor rcore,inertial of the core

agent acore; σ , c
xr
i
core,inertial[cmd]

3.6 Virtual receptor rcore,fsr

The virtual receptor rcore,fsr acquires data from the Force Sensitive Resistors. Each foot con-
tains four such receptors. Those receptors measure the resistance change due to the pressure
applied. The virtual receptor may transmit to the control subsystem the measurement of
each sensor, the total weight supported by each leg and the location of the center of pressure
of each leg.

3.6.1 Communication bu�ers and internal memory of the virtual receptor rcore,fsr

• Internal memory rrcore,fsr:

tm � termination marker

• Real receptor control Ryrcore,fsr:

cmd � command from the virtual receptor,
data_name � data name of a parameter stored in a NAOqi ALMemory module,

• Input from the real receptor Rxrcore,fsr:

value � current value of a parameter named as c
xrcore,fsr[data_name]; this

value is transmitted to the control subsystem in response to its query

29



• Input from the control subsystem c
xrcore,fsr:

cmd � command from the control subsystem; cmd ∈ {GET},
arg � arguments from the control subsystem;

arg = [data_name], where:
data_name � is a string that contains a name of a parameter stored in a

NAOqi ALMemory module. It is used to query the value of
the NAOqi parameter stored in the AlMemory module

• Output produced by the virtual receptor for the control subsystem c
yrcore,fsr:

value � current value of a NAOqi parameter, named as data_name,
received from the AlMemory module.

3.6.2 Behaviour r
+Bcore,fsr,idle of the virtual receptor rcore,fsr

• Transition function:

rf core,fsr,idle , yr
i+1
core,fsr = −

• Terminal condition:
rf τcore,fsr,idle ,

c
xr
i
core,fsr[cmd] = GET

When above mentioned command is obtained from the control subsystem the virtual
receptor stops being idle and immediately commences with the commanded send be-
haviour.

3.6.3 Behaviour r
+Bcore,fsr,get of the virtual receptor rcore,fsr

• Transition function:

r,cf core,fsr,get ,


c
yr
i+1
core,fsr = − for ¬new

(
R
xr
i
core,fsr[value]

)
c
yr
i+1
core,fsr[value] = R

xr
i
core,fsr[value] for new

(
R
xr
i
core,fsr[value]

)
where new is a predicate being TRUE when a new value of its argument is obtained.
r,Rf core,fsr,get ,


R
yr
i+1
core,fsr[cmd] = GET_DATA

R
yr
i+1
core,fsr[data_name] = c

xr
i
core,fsr[arg[data_name]]

 for i = i0

R
yr
i+1
core,fsr = − for i 6= i0

r,rf core,fsr,get ,
rri+1

core,fsr[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
R
xr
i
core,fsr[value]

)
TRUE for i 6= i0 ∧ new

(
R
xr
i
core,fsr[value]

)
The transition function returns to the control subsystem c

yrcore,fsr the current value of

the parameter c
yr
i+1
core,fsr[value] named as data_name.

30



• Terminal condition:

rf τcore,fsr,get ,
rricore,fsr[tm] = TRUE

The termination marker rricore,fsr[tm] is switched when the value of the desired param-
eter is obtained from the real receptor Rcore,fsr. The value TRUE of the termination
marker causes the termination of the behaviour in the next control step.

3.6.4 FSM governing the virtual receptor rcore,fsr

The two state automaton (FSM) governing the activities of the Force Sensitive Resistors
virtual receptor rcore,fsr is presented in �g. 10.

s1 r
+Bcore,fsr,idle

s2 r
+Bcore,fsr,get

σ = GET

Figure 10: FSM governing the activities of the Force Sensitive Resistors virtual receptor
rcore,fsr of the core agent acore; σ , c

xr
i
core,fsr[cmd]

3.7 Virtual receptor rcore,cam

The virtual receptor rcore,cam is responsible for acquiring data obtained by the camera.

3.7.1 Communication bu�ers and internal memory of the virtual receptor rcore,cam

• Internal memory rrcore,cam:

tm � termination marker,
name_id � subscriber identi�er

• Real receptor control Ryrcore,cam:

cmd � command from the virtual receptor,
data_name � data name of a parameter stored in a NAOqi ALMemory module,
value � a new value of camera parameter,
params � camera parameters transmitted to the real receptor,

params = [res, cid, pf, cs], where:
res � resolution,
cid � camera id,
pf � picture format,
cs � color space,
fr � frame rate,

• Input from the real receptor Rxrcore,cam:

value � current value of a parameter named as c
xrcore,fsr[data_name]; this

value is transmitted to the control subsystem in response to its query
image � image collected by the camera,
name_id � subscriber identi�er,

31



• Input from the control subsystem c
xrcore,cam:

cmd � command from the control subsystem;
cmd ∈ {GET, IMAGE, SET_PARAMETERS},

arg � arguments from the control subsystem;
arg = [params, data_name, value], where:
params � camera parameters;

params = [res, cid], where:
res � resolution,
cid � camera id,

data_name � is a string that contains a name of a parameter stored
in a NAOqi ALMemory module. It is used to query the
value of the NAOqi parameter stored in the AlMemory
module, possible parameters: resolution, picture format,
color space, frame rate,

value � a new value of camera parameter,

• Output produced by the virtual receptor for the control subsystem c
yrcore,cam:

value � current value of a NAOqi parameter, named as data_name,
received from the AlMemory module.

image � �le containing an image,

3.7.2 Behaviour r
+Bcore,cam,idle of the virtual receptor rcore,cam

• Transition function:
rf core,cam,idle , yr

i+1
core,cam = −

• Terminal condition:

rf τcore,cam,idle , (cxr
i
core,cam[cmd] = GET) ∨ (cxr

i
core,cam[cmd] = IMAGE)∨

(cxr
i
core,cam[cmd] = SET_PARAMETERS)

When any of the above mentioned commands is obtained from the control subsystem
the virtual receptor stops being idle and immediately transits to an adequate state.

3.7.3 Behaviour r
+Bcore,cam,image of the virtual receptor rcore,cam

• Transition functions:

r,Rf core,cam,image ,



R
yr
i+1
core,cam[cmd] = SUBSCRIBE

R
yr
i+1
core,cam[params[res]] = c

xr
i
core,cam[arg[params[res]]]

R
yr
i+1
core,cam[params[cid]] = c

xr
i
core,cam[arg[params[cid]]]

R
yr
i+1
core,cam[params[cs]] = kBGRColorSpace

R
yr
i+1
core,cam[params[fr]] = maxCameraFPS


for i = i0

{
R
yr
i+1
core,cam[cmd] = GET_IMAGE

R
yr
i+1
core,cam[name_id] = rricore,cam[name_id]

} for i 6= i0∧
new

(
R
xr
i
core,cam[name_id]

)
R
yr
i+1
core,cam[cmd] = UNSUBSCRIBE for i 6= i0∧

new
(
R
xr
i
core,cam[image]

)
32



where new is a predicate being TRUE when a new value of its argument is obtained.

r,rf core,cam,image ,
rri+1

core,cam[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
R
xr
i
core,cam[image]

)
TRUE for i 6= i0 ∧ new

(
R
xr
i
core,cam[image]

)
rri+1

core,cam[name_id] = R
xr
i
core,cam[name_id] for new

(
R
xr
i
core,cam[name_id]

)

r,cf core,cam,image ,


c
yr
i+1
core,cam = − for ¬new

(
R
xr
i
core,cam[image]

)
c
yr
i+1
core,cam[image] = img

(
R
xr
i
core,cam[image]

)
for new

(
R
xr
i
core,cam[image]

)
These transition functions transfer to the real receptor Rcore,cam the three types of
commands: SUBSCRIBE, GET_IMAGE and UNSUBSCRIBE and supplement them
with such parameters as: camera parameters and name_id identifying the subscriber.
After subscription to the camera, the real receptor Rcore,cam returns the name_id.
The real receptor takes a photo in a format acceptable by OpenCV, but the control
subsystem ccore requires the format used by ROS. When the new data appears in
the bu�er R

xr
i
core,cam[image] the virtual receptor converts this data using img function,

sends it to the control subsystem and, moreover, sends to the real receptor Rcore,cam

the UNSUBSCRIBE command.

• Terminal condition:

rf τcore,cam,image ,
rricore,cam[tm] = TRUE

The termination marker rricore,cam[tm] is switched when a new value appears in the
R
xr
i
core,cam[image] bu�er. The value TRUE of the termination marker causes the termi-

nation of the behaviour in the next control step.

3.7.4 Behaviour e
+Bcore,cam,set_params of the virtual receptor rcore,cam

• Transition function:

r,Rf core,cam,set_params ,



R
yr
i+1
core,cam[cmd] = SET_PARAMETERS

R
yr
i+1
core,cam[data_name] = c

xr
i
core,cam[arg[data_name]]

R
yr
i+1
core,cam[value] = c

xr
i
core,cam[arg[value]]

R
yr
i+1
core,cam[params[cid]] = c

xr
i
core,cam[arg[params[cid]]]

This transition function transfers to the real receptor Rcore,cam the parameters ob-
tained from the control subsystem. The parameter data_name for a given camera
c
xr
i
core,cam[arg[params[cid]]] is changed to the provided value. It should be noted that all

the activities performed by the NAOqi setParameter and other functions are executed
within the real receptor Rcore,cam.

33



• Terminal condition:

rf τcore,ls,set_params , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

3.7.5 Behaviour r
+Bcore,cam,get of the virtual receptor rcore,cam

• Transition function:

r,cf core,cam,get ,


c
yr
i+1
core,cam = − for ¬new

(
R
xr
i
core,cam[value]

)
c
yr
i+1
core,cam[value] = R

xr
i
core,cam[value] for new

(
R
xr
i
core,cam[value]

)
where new is a predicate being TRUE when a new value of its argument is obtained.
r,Rf core,cam,get ,


R
yr
i+1
core,cam[cmd] = GET_DATA

R
yr
i+1
core,cam[data_name] = c

xr
i
core,fsr[arg[data_name]]

 for i = i0

R
yr
i+1
core,cam = − for i 6= i0

r,rf core,cam,get ,
rri+1

core,cam[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
R
xr
i
core,cam[value]

)
TRUE for i 6= i0 ∧ new

(
R
xr
i
core,cam[value]

)
The transition function returns to the control subsystem c

yrcore,cam the current value of
the parameter c

yr
i+1
core,cam[value] named as data_name.

• Terminal condition:

rf τcore,cam,get ,
rricore,cam[tm] = TRUE

The termination marker rricore,cam[tm] is switched when the value of the desired param-
eter is obtained from the real receptor Rcore,cam. The value TRUE of the termination
marker causes the termination of the behaviour in the next control step.

3.7.6 FSM governing the virtual receptor rcore,cam

The four state automaton (FSM) governing the activities of the camera virtual receptor
rcore,cam is presented in �g. 11.

3.8 Control subsystem ccore,cs

The control subsystem ccore,cs is responsible for communication with its virtual e�ectors and
virtual receptors as well as other agents such as the repository agent or the cloud agent.
It downloads and initiates the dynamic agent. Moreover, it provides to the dynamic agent
the interface to the robot e�ectors and receptors at the ontological level adequate to the
necessities of the executed task.

34



s1 r
+Bcore,cam,idle s2 r

+Bcore,cam,images3r
+Bcore,cam,get

s4

r
+Bcore,cam,set params

σ = IMAGE

σ = GET
σ = SET PARAMETERS

Figure 11: FSM governing the activities of the camera virtual receptor rcore,cam of the core

agent acore; σ , c
xe
i
core,cam[cmd]

3.8.1 Communication bu�ers and internal memory of the control subsystem

ccore,cs

• Internal memory cccore,cs:

tm � termination marker,
threshold � threshold required for short command interpretation,
app_name � application name to be downloaded from RAPP Store,
app � list of pairs,

app = [(word, app_name), ...], where:
word � keyword for the application_name applica-

tion,
app_name � name of the application to be downloaded,

language � language of the sound synthesis,
dictionary � a vector of words that are to be recognized in the virtual receptor

rcore,mic. The recognized_word will be used to download a desired
dynamic agent (application),

recog_word � recognized word in the virtual receptor rcore,mic,
recog_sentence � the recognized sentence from the RAPP Platform,
rd � contains the path to the recorded �le,
package � downloaded Dynamic Agent package from RAPP Platform,
da_status � dynamic agent status,

• Output communication bu�er e
yccore,cs,ls controlling the virtual e�ector ecore,ls:

e
yccore,cs,ls = c

xecore,ls

• Output communication bu�er e
yccore,cs,body controlling the virtual e�ector ecore,body:

e
yccore,cs,body = c

xecore,body

• Input communication bu�er e
xccore,cs,ls obtaining proprioceptive information from the

virtual e�ector ecore,ls:
e
xccore,cs,ls = c

yecore,ls

• Input communication bu�er e
xccore,cs,body obtaining proprioceptive information from the

virtual e�ector ecore,body:
e
xccore,cs,body = c

yecore,body

35



• Output communication bu�er r
yccore,cs,mic controlling the virtual receptor rcore,mic:

r
yccore,cs,mic = c

xrcore,mic

• Output communication bu�er r
yccore,cs,inertial controlling the virtual receptor rcore,inertial:

r
yccore,cs,inertial = c

xrcore,inertial

• Output communication bu�er r
yccore,cs,touch controlling the virtual receptor rcore,touch:

r
yccore,cs,touch = c

xrcore,touch

• Output communication bu�er r
yccore,cs,fsr controlling the virtual receptor rcore,fsr:

r
yccore,cs,fsr = c

xrcore,fsr

• Output communication bu�er r
yccore,cs,cam controlling the virtual receptor rcore,cam:

r
yccore,cs,cam = c

xrcore,cam

• Input communication bu�er r
xccore,cs,mic obtaining aggregated information from the vir-

tual receptor rcore,mic:
r
xccore,cs,mic = c

yrcore,mic

• Input communication bu�er r
xccore,cs,touch obtaining aggregated information from the

virtual receptor rcore,touch:
r
xccore,cs,touch = c

yrcore,touch

• Input communication bu�er r
xccore,cs,inertial obtaining aggregated information from the

virtual receptor rcore,inertial:

r
xccore,cs,inertial = c

yrcore,inertial

• Input communication bu�er r
xccore,cs,fsr obtaining aggregated information from the vir-

tual receptor rcore,fsr:
r
xccore,cs,fsr = c

yrcore,fsr

• Input communication bu�er r
xccore,cs,cam obtaining aggregated information from the vir-

tual receptor rcore,cam:
r
xccore,cs,cam = c

yrcore,cam

• Input from the dynamic agent agent Txccore,cs,da:

36



da_status � status of dynamic agent,
cmd � command from dynamic agent Txccore,cs to control subsystem ccore,cs,

cmd ∈ {Terminate,Call}
path � a motion trajectory for the moveAlongPath behaviour,
pose � current robot global pose with respect to world coordinate frame,

pose = [position, orientation], where:
position � robot position,

position = [x, y, z], where:
x � x coordinate of a current position,
y � y coordinate of a current position,
z � z coordinate of a current position,

orientation � current robot orientation in a quaternion
form,
x � x component of a current robot ori-

entation represented in a quaternion
form,

y � y component of a current robot ori-
entation represented in a quaternion
form�

z � z component of a current robot ori-
entation represented in a quaternion
form�

w � w component of a current robot ori-
entation represented in a quaternion
form�

37



arg_els � arguments for a loudspeaker from a dynamic agent;
arg_els = [cmd, arg], where:
cmd � command for ecore,ls,

cmd ∈ {PLAY_AUDIO,PLAY_AUDIO, STOP_SOUND},
arg � arguments for a virtual e�ector ecore,ls,

arg = [text, fp, params, playLoop,
begin_position], where:
text � the text to be transformed into

the synthesized sound,
fp � the path to the �le that will be

reproduced,
params � loudspeaker virtual e�ector pa-

rameters,
params = [dvt, dl, dv, spr],
where:
dvt � desired voice type,
dl � desired language,
dv � volume requested from

the range [0.0 - 1.0],
spr � stereo panorama requested

(-1.0 : left, 1.0 : right,
0.0 : center),

playLoop � plays a �le in a loop if the �ag
is set
to TRUE, otherwise plays once,

begin_position � position in second where the
playing
should begin,

38



arg_ebody � arguments for a body e�ector from a dynamic agent,
arg_ebody = [cmd, arg], where:
cmd � command for body e�ector received from

dynamic agent,
cmd ∈ {MOVE_TO,MOVE_VEL,MOVE_HEAD,
TAKE_PREDEFINED_POSTURE,MOVE_STOP,
MOVE_JOINT,LOOK_AT_POINT},

arg � arguments from the control subsystem;
arg = [velocity, dpose, posture, dja, look_at,move_head],
where:
velocity � velocity of motion with respect to the

robot coordinate frame (memorized
argument of the MOVE command);
velocity = [vx, vy, ω], where:
vx � velocity along the X-axis, in me-

ters per second,
vy � velocity along the Y-axis, in me-

ters per second,
ω � velocity around the Z-axis, in

radians per second,
dpose � desired position with respect to the

robot coordinate frame (memorized
argument of the MOVE command);
dpose = [x, y, θ], where:
x � distance along the X-axis, in

meters,
y � distance along the Y-axis, in

meters,
θ � rotation around the Z-axis, in

radians,
posture � name of a prede�ned posture to be

attained,
dja � desired joint angles with parameters,

dja = [joints, values], where:
joints � a name or names of joints,
values � one or more angles in radians,

during the interpolation of an-
gles,

look_at � point at which the head of the
robot should be directed, in a
FRAME_WORLD coordinates,
look_at = [x, y, z], where:
x � x coordinate of a desired point,
y � y coordinate of a desired point,
z � z coordinate of a desired point,

move_head � two desired angles needed to rotate
the robot head,
move_head = [yaw, pitch], where:
yaw � head end position in yaw angles,
pitch � head end position in pitch angles,

39



arg_rmic � arguments for a microphone from a dynamic agent,
arg_rmic = [cmd, arg], where:
cmd � command for a microphone receptor,

cmd ∈ {CAPTURE_AUDIO,WORD_SPOTTING},
arg � arguments from control subsystem,

arg = [dct, dict_size, fp, time, enrg, st],
where:
dct � contains the list of words that should be

recognized,
dict_size � dictionary size,
fp � �le containing the recorded signal samples,
time � commanded duration of the recording,
enrg � threshold of signal energy for microphones,
st � time during which the microphone signal

energy is compared with the threshold.
When during this time the signal will be
lower than the threshold then the record-
ing stops,

arg_rcam � arguments for a camera from a dynamic agent,
arg_rcam = [cmd, arg], where:
cmd � command for a camera receptor,

cmd ∈ {CAPTURE_IMAGE, SET_CAMERA_PARAMS},
arg � arguments from the control subsystem;

arg = [params, data_name, value], where:
params � camera parameters;

params = [res, cid], where:
res � resolution,
cid � camera id,

data_name � is a string that contains a name of a param-
eter stored in a NAOqi ALMemory module.
It is used to query the value of the NAOqi
parameter stored in the AlMemory mod-
ule, possible parameters: resolution, pic-
ture format, color space, frame rate,

value � a new value of camera parameter,

• Input from the RAPP Platform agent Txccore,cs,rp:

recog_sentence � the recognized sentence from the RAPP Platform,
downloaded � a boolean information if the package was downloaded correctly from

RAPP Store. If a value is False then probably a package doesn't exist
in the RAPP Store or a package was downloaded incorrectly,

• Output to the dynamic agent Txccore,cs,da:

40



is_finished � TRUE if a current behaviour was �nished,
ca_status � core agent status,
captured_image � captured image from desired camera,
path_to_audio � path to the recorded audio �le,
recognized_word � recognized word,
pose � current robot global pose with respect to world coordinate frame,

pose = [position, orientation], where:
position � robot position,

position = [x, y, z], where:
x � x coordinate of a current position,
y � y coordinate of a current position,
z � z coordinate of a current position,

orientation � current robot orientation in a quaternion
form,
x � x component of a current robot ori-

entation represented in a quaternion
form,

y � y component of a current robot ori-
entation represented in a quaternion
form�

z � z component of a current robot ori-
entation represented in a quaternion
form�

w � w component of a current robot ori-
entation represented in a quaternion
form�

• Output to the RAPP Platform agent Tyccore,cs,rp:

package � a dynamic package to be downloaded from RAPP Store,
path_to_audio � path to the recorded audio �le,
rd � contains raw data from the microphones,

3.8.2 Behaviour c
+Bcore,cs,init of the control subsystem ccore,cs

• Transition function:

cf core,cs,init , −

Agent creation and its initialization are external to the agent and as such are not
represented within this model. It is assumed that from the point of a particular agent
its creation is caused by an external entity and the process itself is not governed by
a particular transition function. The implementation of this process brings about the
creation of a hop service, ros services and rosbridge. The parameters stored in the
con�gure �les are loaded into the internal memory, e.g. dictionary cccore,cs[dictionary],
the threshold cccore,cs[threshold] and the path cccore,cs[rd] where recorded �le will be
placed. For that purpose the function getFromCon�gureFile() is used. All this is
represented by a behaviour having an empty transition function as an argument. It
is represented in the graph of the FSM governing the actions of the agent just for the
sake of completeness, from the point of view of its implementation.

• Terminal condition:

41



cf τcore,cs,init , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

3.8.3 Behaviour c
+Bcore,cs,register of the control subsystem ccore,cs

• Transition function:

cf core,cs,register , −

This is a behaviour registering with the RAPP platform � currently not used.

• Terminal condition:

cf τcore,cs,register , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

3.8.4 Behaviour c
+Bcore,cs,listen of the control subsystem ccore,cs

• Transition function:

c,rf core,cs,listen ,


r
yc
i+1
core,cs,mic[cmd] = RECOGNIZE

r
yc
i+1
core,cs,mic[arg[dictionary]] = ccicore,cs[dictionary]

r
yc
i+1
core,cs,mic[arg[threshold]] = ccicore,cs[threshold]

 for i = i0

r
yc
i+1
core,mic = − for i 6= i0

c,cf core,cs,listen ,
cci+1

core,cs[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
r
xc
i
core,cs,mic[rw]

)
TRUE for i 6= i0 ∧ new

(
r
xc
i
core,cs,mic[rw]

)
cci+1

core,cs[recog_word] = r
xc

i
core,cs,mic[rw] for i 6= i0 ∧ new

(
r
xc
i
core,cs,mic[rw]

)
It sets the dictionary and commands the microphones to listen to the user.

• Terminal condition:

cf τcore,cs,listen , ccicore,cs[tm] = TRUE

The termination marker ccicore,cs[tm] is switched when the new value of a recognized
word is obtained from the virtual receptor rcore,mic. The value TRUE of the termination
marker causes the termination of the behaviour in the next control step.

42



3.8.5 Behaviour c
+Bcore,cs,interpretLong

of the control subsystem ccore,cs

• Transition function:

c,Tf core,cs,interpretLong
,

{
T
yc
i+1
core,cs,rp[rd] = ccicore,cs[rd] for i = i0

T
yc
i+1
core,cs,rp = − for i 6= i0

c,cf core,cs,interpretLong
,

cci+1
core,cs[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
T
xc
i
core,cs,rp[recog_word]

)
TRUE for i 6= i0 ∧ new

(
T
xc
i
core,cs,rp[recog_word]

)
cci+1

core,cs[recog_sentence] =
T
xc
i
core,cs,rp[recog_sentence] for i 6= i0 ∧ new

(
T
xc
i
core,cs,rp[recog_sentence]

)
cci+1

core,cs[app_name] =

getAppName
(
T
xc

i
core,cs,rp[recog_sentence]

)
for i 6= i0∧

new
(
T
xc
i
core,cs,rp[recog_sentence]

)
Sends to the RAPP Platform the recorded raw data to recognize a user command and
interprets the recognized word. Function getAppName returns the application name
ccicore,cs[app[app_name]] based on a recognized word ccicore,cs[recog_word].

• Terminal condition:

cf τcore,cs,interpretLong
, ccicore,cs[tm] = TRUE

The termination marker ccicore,cs[tm] is switched when the new value of a recognized
word is obtained from the RAPP Platform. The value TRUE of the termination marker
causes the termination of the behaviour in the next control step.

3.8.6 Behaviour c
+Bcore,cs,interpretshort

of the control subsystem ccore,cs

• Transition function:

c,cf core,cs,interpretshort
, cci+1

core,cs[app_name] =
getAppName

(
cci+1

core,cs[recog_word]
)

for cci+1
core,cs[recog_word] 6= Abort∧

cci+1
core,cs[recog_word] 6= Empty∧

cci+1
core,cs[recog_word] 6= Long

Error for otherwise

Interprets the short command. Function getAppName returns the application name
ccicore,cs[app[app_name]] based on a recognized word ccicore,cs[recog_word].

• Terminal condition:
cf τcore,cs,interpretshort

, TRUE
This is a one step behaviour, so the terminal condition is TRUE.

43



3.8.7 Behaviour c
+Bcore,cs,inform of the control subsystem ccore,cs

• Transition function:

• Transition function:

c,ef core,cs,inform ,


e
yc
i+1
core,cs,ls[cmd] = SAY

e
yc
i+1
core,cs,ls[arg[text]] = ”Command_was_not_recognized”

 for i = i0

e
yc
i+1
core,cs,ls = − for i 6= i0

c,cf core,cs,inform ,

cci+1
core,cs[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
e
xc
i
core,cs,ls[reply]

)
TRUE for i 6= i0 ∧ new

(
e
xc
i
core,cs,ls[reply]

)
Behaviour calls a service from the virtual e�ector to inform that the command was not
recognized.

• Terminal condition:

cf τcore,cs,inform , ccicore,cs[tm] = TRUE

The termination marker ccicore,cs[tm] is switched when the sound was synthesized. The
value TRUE of the termination marker causes the termination of the behaviour in the
next control step.

3.8.8 Behaviour c
+Bcore,cs,load of the control subsystem ccore,cs

• Transition function:

c,Tf core,cs,load ,


T
yc
i+1
core,cs[package] =

ccicore,cs,rp[app_name] for i = i0
T
yc
i+1
core,cs,rp = − for i 6= i0

c,cf core,cs,load ,
cci+1

core,cs[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
T
xc
i
core,cs,rp[downloaded]

)
TRUE for i 6= i0 ∧ new

(
T
xc
i
core,cs,rp[downloaded]

)
cci+1

core,cs[package] = downloadDAPackage()
for i 6= i0 ∧ new

(
T
xc
i
core,cs,rp[downloaded]

)
∧ T

xc
i
core,cs,rp[downloaded] = TRUE

The recognized application name is sent as a request of downloading a package of
dynamic agent. Behaviour downloads also a dynamic agent package from the RAPP
Platform.

44



• Terminal condition:

cf τcore,cs,load , ccicore,cs[tm] = TRUE

The termination marker ccicore,cs[tm] is switched when the information is received if the
package was downloaded correctly from the RAPP Store. The value TRUE of the
termination marker causes the termination of the behaviour in the next control step.

3.8.9 Behaviour c
+Bcore,cs,activate of the control subsystem ccore,cs

• Transition function:

cf core,cs,activate , activateDA(cci+1
core,cs[package])

c,cf core,cs,activate ,

cci+1
core,cs[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
T
xc
i+1
core,cs,da[da_status]

)
TRUE for i 6= i0 ∧ new

(
T
xc
i+1
core,cs,da[da_status]

)
cci+1

core,cs[da_status] = T
xc

i+1
core,cs,da[da_status] for i 6= i0∧

new
(
T
xc
i+1
core,cs,da[da_status]

)
T
xc
i+1
core,cs,da[da_status] = Working

Activates the dynamic agent process.

• Terminal condition:

cf τcore,cs,activate ,
ccicore,cs[tm] = TRUE

The termination marker ccicore,cs[tm] is switched when the information is received from
the dynamic agent that it was activated and is ready to send commands. The value
TRUE of the termination marker causes the termination of the behaviour in the next
control step.

3.8.10 Behaviour c
+Bcore,cs,wait_cmd of the control subsystem ccore,cs

• Transition function:

c,ef core,cs,wait_cmd ,

c,ef core,cs,wait_body ,

e
yc
i+1
core,cs,body[cmd] = T

xc
i
core,cs,da[arg_ebody[cmd]]

e
yc
i+1
core,cs,body[arg] = T

xc
i
core,cs,da[arg_ebody[arg]]

 for new
(
T
xc
i
core,cs,da[arg_ebody[cmd]]

)
c,ef core,cs,wait_ls ,

e
yc
i+1
core,cs,ls[cmd] = T

xc
i
core,cs,da[arg_els[cmd]]

e
yc
i+1
core,cs,ls[arg] = T

xc
i
core,cs,da[arg_els[arg]]

 for new
(
T
xc
i
core,cs,da[arg_els[cmd]]

)

45



c,rf core,cs,wait_cmd ,

c,rf core,cs,wait_mic ,

r
yc
i+1
core,cs,mic[cmd] = T

xc
i
core,cs,da[arg_rmic[cmd]]

r
yc
i+1
core,cs,mic[arg] = T

xc
i
core,cs,da[arg_rmic[arg]]

 for new
(
T
xc
i
core,cs,da[arg_rmic[cmd]]

)
c,rf core,cs,wait_cam ,

r
yc
i+1
core,cs,cam[cmd] = T

xc
i
core,cs,da[arg_rcam[cmd]]

r
yc
i+1
core,cs,cam[arg] = T

xc
i
core,cs,da[arg_rcam[arg]]

 for new
(
T
xc
i
core,cs,da[arg_rcam[cmd]]

)

c,cf core,cs,waitcmd
,

cci+1
core,cs[tm] =



FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
T
xc
i
core,cs,da[arg_ebody[cmd]

)
∧¬new

(
T
xc
i
core,cs,da[arg_els[cmd]

)
∧¬new

(
T
xc
i
core,cs,da[arg_rcam[cmd]]

)
∧¬new

(
T
xc
i
core,cs,da[arg_rmic[cmd]]

)
∧ T

xc
i
core,cs,da[cmd] 6= Terminate

TRUE for i 6= i0 ∧ new
(

new
(
T
xc
i
core,cs,da[arg_ebody[cmd]

)
∨new

(
T
xc
i
core,cs,da[arg_els[cmd]

)
∨new

(
T
xc
i
core,cs,da[arg_rcam[cmd]]

)
∨new

(
T
xc
i
core,cs,da[arg_rmic[cmd]]

)
∨ T

xc
i
core,cs,da[cmd] = Terminate

)
Behaviour waits for new commands and arguments from dynamic agent.

• Terminal condition:

cf τcore,cs,waitcmd
, ccicore,cs[tm] = TRUE

The termination marker ccicore,cs[tm] is switched when the new dynamic agent command
appears in the control subsystem. The value TRUE of the termination marker causes
the termination of the behaviour in the next control step.

3.8.11 Behaviour c
+Bcore,cs,execute of the control subsystem ccore,cs

Behaviour c
+Bcore,cs,execute represents many behaviours called by dynamic agent. Below a list

of them is presented:

• Behaviour c
+Bcore,cs,textToSpeech

46



Transition function:

c,ef core,cs,textToSpeech ,


e
yc
i+1
core,cs,ls[cmd] = SAY

e
yc
i+1
core,cs,ls[arg[text]] = T

xc
i
core,cs,da[arg_els[arg[text]]]

e
yc
i+1
core,cs,ls[arg[params[dl]]] = T

xc
i
core,cs,da[arg_els[arg[params[dl]]]]

 for i = i0

e
yc
i+1
core,mic = − for i 6= i0

c,cf core,cs,textToSpeech ,

cci+1
core,cs[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
e
xc
i
core,cs,ls[synthesized]

)
TRUE for i 6= i0 ∧ new

(
e
xc
i
core,cs,ls[synthesized]

)

c,Tf core,cs,textToSpeech , T
yc
i+1
core,cs,da[is_finished] =

{
TRUE for i 6= i0 ∧ new

(
e
xc
i
core,cs,ls[synthesized]

)
− otherwise

The command SAY and parameters are transfered to the virtual e�ector ecore,ls.

Terminal condition:

cf τcore,cs,textToSpeech , ccicore,cs[tm] = TRUE

The termination marker ccicore,cs[tm] is switched if the sound was synthesized. The
value TRUE of the termination marker causes the termination of the behaviour in the
next control step.

• Behaviour c
+Bcore,cs,playAudio

Transition function:

c,ef core,cs,playAudio ,

e
yc
i+1
core,cs,ls[cmd] = PLAY

e
yc
i+1
core,cs,ls[arg[fp]] = T

xc
i
core,cs,da[arg_els[arg[fp]]]

e
yc
i+1
core,cs,ls[arg[playLoop]] = T

xc
i
core,cs,da[arg_els[arg[playLoop]]]

e
yc
i+1
core,cs,ls[arg[begin_position]] = T

xc
i
core,cs,da[arg_els[arg[begin_position]]]

e
yc
i+1
core,cs,ls[arg[params[dv]]] = T

xc
i
core,cs,da[arg_els[arg[params[dv]]]]

e
yc
i+1
core,cs,ls[arg[params[spr]]] = T

xc
i
core,cs,da[arg_els[arg[params[spr]]]]

c,cf core,cs,textToSpeech , cci+1
core,cs[next_state] = WAIT_CMD

The command PLAY and parameters are transfered to the virtual e�ector ecore,ls.

Terminal condition:
cf τcore,cs,playAudio , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

47



• Behaviour c
+Bcore,cs,wordSpotting

Transition function:

c,rf core,cs,wordSpotting ,


r
yc
i+1
core,cs,mic[cmd] = RECOGNIZE

r
yc
i+1
core,cs,mic[arg[dictionary]] = T

xc
i
core,cs,da[arg_rmic[arg[dct]]]

 for i = i0

r
yc
i+1
core,mic = − for i 6= i0

c,cf core,cs,wordSpotting ,
cci+1

core,cs[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
r
xc
i
core,cs,mic[rw]

)
TRUE for i 6= i0 ∧ new

(
r
xc
i
core,cs,mic[rw]

)
cci+1

core,cs[recog_word] =
r
xc
i
core,cs,mic[rw] for i 6= i0 ∧ new

(
r
xc
i
core,cs,mic[rw]

)
c,Tf core,cs,wordSpotting , T

yc
i+1
core,cs,da[recognized_word] ={

r
xc
i
core,cs,mic[rw] for i 6= i0 ∧ new

(
r
xc
i
core,cs,mic[rw]

)
− otherwise

It recognizes the word included in the dictionary and returns it to the dynamic agent.

Terminal condition:

cf τcore,cs,wordSpotting , ccicore,cs[tm] = TRUE

The termination marker ccicore,cs[tm] is switched when the new value of a recognized
word is obtained from the virtual receptor rcore,mic. The value TRUE of the termination
marker causes the termination of the behaviour in the next control step.

• Behaviour c
+Bcore,cs,captureAudio

Transition function:

c,rf core,cs,captureAudio ,

r
yc
i+1
core,cs,mic[cmd] = RECORD

r
yc
i+1
core,cs,mic[arg[fp]] = ccicore,cs[rd]

r
yc
i+1
core,cs,mic[arg[time]] = T

xc
i
core,cs,da[arg_rmic[arg[time]]]


for i = i0 ∧ new

(
T
xc
i
core,cs,da[arg_rmic[arg[time]]]

)
r
yc
i+1
core,cs,mic[cmd] = REGISTER

r
yc
i+1
core,cs,mic[arg[fp]] = ccicore,cs[rd]

r
yc
i+1
core,cs,mic[arg[st]] =

T
xc
i
core,cs,da[arg_rmic[arg[st]]]

r
yc
i+1
core,cs,mic[arg[enrg]] =

T
xc
i
core,cs,da[arg_rmic[arg[enrg]]]

r
yc
i+1
core,cs,mic[arg[params]] = [smpl_rate, channels]



for i = i0 ∧ ¬new
(

T
xc
i
core,cs,da[arg_rmic[arg[time]]]

)

r
yc
i+1
core,cs,mic = − for i 6= i0

48



c,cf core,cs,captureAudio ,
cci+1

core,cs[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
r
xc
i
core,cs,mic[rec]

)
TRUE for i 6= i0 ∧ new

(
r
xc
i
core,cs,mic[rec]

)
cci+1

core,cs[next_state] =

WAIT_CMD for i 6= i0 ∧ new
(
r
xc
i
core,cs,mic[rec]

)
c,Tf core,cs,captureAudio ,

T
yc
i+1
core,cs,da[path_to_audio] ={

ccicore,cs[rd] for i 6= i0 ∧ new
(
r
xc
i
core,cs,mic[rec]

)
− otherwise

It records the sound. RECORD command records sound for a given time, whereas
REGISTER command is responsible for recording sound until the silence detection.

Terminal condition:

cf τcore,cs,captureAudio ,
ccicore,cs[tm] = TRUE

The termination marker ccicore,cs[tm] is switched when the new recording is terminated.
The value TRUE of the termination marker causes the termination of the behaviour
in the next control step.

• Behaviour c
+Bcore,cs,getTransform

Returns the matrix as a transformation between two coordinates.

• Behaviour c
+Bcore,cs,captureImage

Transition function:

c,rf core,cs,captureImage ,


r
yc
i+1
core,cs,cam[cmd] = IMAGE

r
yc
i+1
core,cs,cam[arg[params[cid]]] = T

xc
i
core,cs,da[arg_rcam[arg[params[cid]]]]

r
yc
i+1
core,cs,cam[arg[params[res]]] = T

xc
i
core,cs,da[arg_rcam[arg[params[res]]]]

 for i = i0

r
yc
i+1
core,cam = − for i 6= i0

c,cf core,cs,captureImage , cci+1
core,cs[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
r
xc
i
core,cs,cam[image]

)
TRUE for i 6= i0 ∧ new

(
r
xc
i
core,cs,cam[image]

)
c,Tf core,cs,captureImage ,

T
yc
i+1
core,cs,da[captured_image] ={

r
xc
i
core,cs,cam[image] for i 6= i0 ∧ new

(
r
xc
i
core,cs,cam[image]

)
− otherwise

Captures the image from the robots camera and transfers the captured image to the
dynamic agent.

49



Terminal condition:

cf τcore,cs,captureImage ,
ccicore,cs[tm] = TRUE

The termination marker ccicore,cs[tm] is switched when the new image is received from
the virtual receptor rcore,cam. The value TRUE of the termination marker causes the
termination of the behaviour in the next control step.

• Behaviour c
+Bcore,cs,setCameraParams

Transition function:

c,rf core,cs,setCameraParams ,

r
yc
i+1
core,cs,cam[cmd] = SET_PARAMETERS

r
yc
i+1
core,cs,cam[arg[value]] = T

xc
i
core,cs,da[arg_rcam[arg[value]]]

r
yc
i+1
core,cs,cam[arg[dataname]] = T

xc
i
core,cs,da[arg_rcam[arg[data_name]]]

r
yc
i+1
core,cs,cam[arg[params[cid]]] = T

xc
i
core,cs,da[arg_rcam[arg[params[cid]]]

for i = i0

Modi�es camera parameters.

Terminal condition:
cf τcore,cs,setCameraParams , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

• Behaviour c
+Bcore,cs,moveTo

Transition function:

c,ef core,cs,moveTo ,



e
yc
i+1
core,cs,body[cmd] = MOVE_TO

e
yc
i+1
core,cs,body[arg[dpose[x]]] = T

xc
i
core,cs,da[arg_ebody[arg[dpose[x]]]]

e
yc
i+1
core,cs,body[arg[dpose[y]]] = T

xc
i
core,cs,da[arg_ebody[arg[dpose[y]]]]

e
yc
i+1
core,cs,body[arg[dpose[θ]]] = T

xc
i
core,cs,da[arg_ebody[arg[dpose[θ]]]]


for i = i0

e
yc
i+1
core,body = − for i 6= i0

c,cf core,cs,moveTo , cci+1
core,cs[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
e
xc
i
core,cs,body[pose]

)
TRUE for i 6= i0 ∧ new

(
e
xc
i
core,cs,body[pose]

)
Move to the speci�ed position with respect to the robot coordinate frame.

Terminal condition:

cf τcore,cs,moveTo ,
ccicore,cs[tm] = TRUE

The termination marker ccicore,cs[tm] is switched if the robot reached the desired po-
sition. The value TRUE of the termination marker causes the termination of the
behaviour in the next control step.

50



• Behaviour c
+Bcore,cs,moveVel

Transition function:

c,ef core,cs,moveVel ,

e
yc
i+1
core,cs,body[cmd] = MOVE

e
yc
i+1
core,cs,body[arg[velocity[vx]]] = T

xc
i
core,cs,da[arg_ebody[arg[velocity[vx]]]]

e
yc
i+1
core,cs,body[arg[velocity[vy]]] = T

xc
i
core,cs,da[arg_ebody[arg[velocity[vy]]]]

e
yc
i+1
core,cs,body[arg[velocity[ω]]] = T

xc
i
core,cs,da[arg_ebody[arg[velocity[ω]]]]

Move with speci�ed velocity.

Terminal condition:
cf τcore,cs,moveVel , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

• Behaviour c
+Bcore,cs,moveStop

Transition function:

c,ef core,cs,moveStop , e
yc
i+1
core,cs,body[cmd] = STOP

Robot stops movement.

Terminal condition:
cf τcore,cs,moveStop , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

• Behaviour c
+Bcore,cs,moveJoint

Transition function:

c,ef core,cs,moveJoint ,


e
yc
i+1
core,cs,body[cmd] = INTERPOLATION

e
yc
i+1
core,cs,body[arg[dja[joints]]] = T

xc
i
core,cs,da[arg_ebody[arg[dja[joints]]]]

e
yc
i+1
core,cs,body[arg[dja[values]]] = T

xc
i
core,cs,da[arg_ebody[arg[dja[values]]]]

 for i = i0

e
yc
i+1
core,body = − for i 6= i0

c,cf core,cs,moveJoint ,

cci+1
core,cs[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
e
xc
i
core,cs,body[attained]

)
TRUE for i 6= i0 ∧ new

(
e
xc
i
core,cs,body[attained]

)
Move Nao joint to speci�ed angle.

Terminal condition:

cf τcore,cs,moveJoint ,
ccicore,cs[tm] = TRUE

51



The termination marker ccicore,cs[tm] is switched if the robot reached the desired angle
position. The value TRUE of the termination marker causes the termination of the
behaviour in the next control step.

• Behaviour c
+Bcore,cs,takePredefinedPosture

Transition function:

c,ef core,cs,takePredefinedPosture ,


e
yc
i+1
core,cs,body[cmd] = POSTURE

e
yc
i+1
core,cs,body[arg[posture]] = T

xc
i
core,cs,da[arg_ebody[arg[posture]]]

 for i = i0

e
yc
i+1
core,body = − for i 6= i0

c,cf core,cs,takePredefinedPosture ,

cci+1
core,cs[tm] =


FALSE for i = i0

− for i 6= i0 ∧ ¬new
(
e
xc
i
core,cs,body[attained]

)
TRUE for i 6= i0 ∧ new

(
e
xc
i
core,cs,body[attained]

)
Move to a prede�ned posture.

Terminal condition:

cf τcore,cs,takePredefinedPosture ,
ccicore,cs[tm] = TRUE

The termination marker ccicore,cs[tm] is switched if the robot reached the desired posture.
The value TRUE of the termination marker causes the termination of the behaviour
in the next control step.

• Behaviour c
+Bcore,cs,rest

Moves to a prede�ned safety posture and removes the joints sti�ness.

• Behaviour c
+Bcore,cs,moveAlongPath

Robot moves along speci�ed path.

• Behaviour c
+Bcore,cs,setGlobalPose

Sets a current robot position in a world frame.

• Behaviour c
+Bcore,cs,lookAtPoint

Robot looks at the point speci�ed in world frame.

• Behaviour c
+Bcore,cs,getRobotPose

Returns the current robot position.

3.8.12 Behaviour c
+Bcore,cs,destroy of the control subsystem ccore,cs

• Transition function:

cf core,cs,destroy , destroyDA()

Kills all dynamic agent processes.

52



• Terminal condition:

cf τcore,cs,destroy , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

3.8.13 Behaviour c
+Bcore,cs,unregister of the control subsystem ccore,cs

• Transition function:

cf core,cs,unregister , unregister()

Unregisters robot from the repository agent.

• Terminal condition:

cf τcore,cs,unregister , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

3.8.14 Behaviour c
+Bcore,cs,finish of the control subsystem ccore,cs

• Transition function:

cf core,cs,finish , −

Kills all core agent processes. The destruction of the agent itself is beyond the agent
model � it has to be caused by an outside source and does not require any internal
behaviour, thus such a behaviour is represented by an empty transition function. It
is represented in the graph of the FSM governing the actions of the agent just for the
sake of completeness, from the point of view of its implementation.

• Terminal condition:

cf τcore,cs,finish , TRUE

This is a one step behaviour, so the terminal condition is TRUE.

3.8.15 Behaviour c
+Bcore,cs,recordcmd

of the control subsystem ccore,cs

• Transition function:

c,rf core,cs,recordcmd
,



r
yc
i+1
core,cs,mic[cmd] = REGISTER

r
yc
i+1
core,cs,mic[arg[file_path]] = ccicore,cs[rd]

r
yc
i+1
core,cs,mic[arg[energy]] = ENERGY

r
yc
i+1
core,cs,mic[arg[silence_time]] = SILENCE_TIME


for i = i0

r
yc
i+1
core,mic = − for i 6= i0

53



c,cf core,cs,recordcmd
,

cci+1
core,cs[tm] =


FALSE for i = i0
− for i 6= i0 ∧ r

xc
i
core,cs,mic[rec] 6= TRUE

TRUE for i 6= i0 ∧ r
xc
i
core,cs,mic[rec] = TRUE

Behaviour calls a service from virtual receptor of recording until a silence detected.

• Terminal condition:

cf τcore,cs,recordcmd
, ccicore,cs[tm] = TRUE

The termination marker ccicore,cs[tm] is switched when the virtual receptor rcore,mic de-
tects the silence. The value TRUE of the termination marker causes the termination
of the behaviour in the next control step.

3.8.16 FSM governing the control subsystem ccore,cs

The fourteen state automaton (FSM) governing the activities of the body virtual e�ector
ecore,body is presented in �g. 12.

s1 c
+Bcore,cs,init

s2 c
+Bcore,cs,register

s3

c
+Bcore,cs,listen

s4 c
+Bcore,cs,interpret longs5c

+Bcore,cs,interpret short

s6 c
+Bcore,cs,load

s7 c
+Bcore,cs,activate

s8 c
+Bcore,cs,wait cmd

s9 c
+Bcore,cs,execute

s10 c
+Bcore,cs,destroy

s11c
+Bcore,cs,unregister

s12

c
+Bcore,cs,finish

s13

c
+Bcore,cs,record cmd

s14

c
+Bcore,cs,inform

otherwise
η 6= EMPTY

otherwise

ξ = TERMINATED

σ = EMPTY

σ = ABORT

σ = LONG

η = EMPTY

Figure 12: FSM governing the activities of the control subsystem ccore of the core agent acore;
σ , r

xc
i
core,cs,mic[rw], η , T

xc
i
core,cs,rp[recog_sentence], ξ , T

xc
i
core,cs,da[cmd]

54



3.8.17 Behaviours corresponding to the RAPP API functions

Below there are presented behaviours with the corresponding Rapp API functions:

• Behaviour c
+Bcore,cs,playAudio corresponds to the playAudio function,

• Behaviour c
+Bcore,cs,textToSpeech corresponds to the textToSpeech function,

• Behaviour c
+Bcore,cs,wordSpotting corresponds to the wordSpotting function,

• Behaviour c
+Bcore,cs,captureAudio corresponds to the captureAudio function and to the

captureAudio (with silence recognition) function,

• Behaviour c
+Bcore,cs,voiceRecord corresponds to the voiceRecord function,

• Behaviour c
+Bcore,cs,moveTo corresponds to the moveTo function,

• Behaviour c
+Bcore,cs,moveVel corresponds to the moveVel function,

• Behaviour c
+Bcore,cs,getRobotPosition corresponds to the getRobotPosition function,

• Behaviour c
+Bcore,cs,moveStop corresponds to the moveStop function,

• Behaviour c
+Bcore,cs,moveJoint corresponds to the moveJoint function,

• Behaviour c
+Bcore,cs,takePredefinedPosture corresponds to the takePrede�nedPosture func-

tion,

• Behaviour c
+Bcore,cs,rest corresponds to the rest function,

• Behaviour c
+Bcore,cs,moveAlongPath corresponds to the moveAlongPath function,

• Behaviour c
+Bcore,cs,globalLocalization corresponds to the globalLocalization function,

• Behaviour c
+Bcore,cs,lookAtPoint corresponds to the lookAtPoint function,

• Behaviour c
+Bcore,cs,captureImage corresponds to the captureImage function,

• Behaviour c
+Bcore,cs,setCameraParams corresponds to the setCameraParams function,

• Behaviour c
+Bcore,cs,getTransform corresponds to the getTransform function.

References

[1] C. Zieli«ski, T. Kornuta, and M. Bory«, �Speci�cation of robotic systems on an example
of visual servoing,� in 10th International IFAC Symposium on Robot Control (SYROCO),
vol. 10, 2012, pp. 45�50.

[2] T. Kornuta and C. Zieli«ski, �Robot control system design exempli�ed by multi-camera
visual servoing,� Journal of Intelligent & Robotic Systems, vol. 77, no. 3�4, pp. 499�524,
2015.

[3] C. Zieli«ski and T. Winiarski, �General speci�cation of multi-robot control system struc-
tures,� Bulletin of the Polish Academy of Sciences � Technical Sciences, vol. 58, no. 1,
pp. 15�28, 2010.

55



[4] C. Zieli«ski, T. Kornuta, and T. Winiarski, �A systematic method of designing control
systems for service and �eld robots,� in 19-th IEEE International Conference on Methods
and Models in Automation and Robotics, MMAR'2014. IEEE, pp. 1�14.

[5] P. Trojanek, T. Kornuta, and C. Zieli«ski, �Design of asynchronously stimulated robot
behaviours,� in Robot Motion and Control (RoMoCo), 9th Workshop on, K. Kozªowski,
Ed., 2013, pp. 129�134.

[6] C. Zieli«ski, W. Kasprzak, T. Kornuta, W. Szynkiewicz, P. Trojanek, M. Wal¦cki,
T. Winiarski, and T. Zieli«ska, �Control and programming of a multi-robot-based re-
con�gurable �xture,� Industrial Robot: An International Journal, vol. 40, no. 4, pp.
329�336, 2013.

56


